УДК 621.372.5

Е.В. Хорошилов, С.В. Козлов, С.В. Павлов, А.В. Дроздов

Сверхширокополосный коаксиально-микрополосковый переход с диапазоном рабочих частот 0–50 ГГц

Описывается разработка сверхширокополосного коаксиально-микрополоскового перехода с коаксиального тракта сечением 2,4/1,04 мм на микрополосковую линию копланарного исполнения, в конструкции не используется гермоввод.

Ключевые слова: коаксиально-микрополосковый переход, коэффициент отражения, копланарная микрополосковая линия.

doi: 10.21293/1818-0442-2017-20-3-128-131

Коаксиально-микрополосковый переход (КМПП) – пассивное устройство, предназначенное для преобразования электромагнитных (ЭМ) волн типа Т коаксиальной линии в квази-Т-волну микрополосковой линии (МПЛ), и наоборот. Основным требованием, предъявляемым к КМПП, является низкий уровень возвратных и проходных потерь.

Блоки большинства современных измерительных СВЧ-приборов изготавливаются по технологии печатных плат, а в качестве средств межблочного соединения применяются элементы коаксиального тракта. Эти факторы делают КМПП широко применяемыми при разработке различных СВЧ-узлов, как правило, с их помощью реализуются межблочные соединения внутри устройств и/или между ними. Существуют различные типы конструкций КМПП, в первую очередь, отличающиеся конфигурацией согласуемых трактов. В [1] решена электродинамическая задача о соосном сочленении коаксиальной и МП линий.

Многие современные производители в конструкции КМПП используют гермовводы, применение которых необходимо для решения довольно узкого спектра задач и которые значительно ухудшают частотные характеристики переходов, а также усложняют их производство – во многих случаях применение гермовводов в конструкции КМПП нецелесообразно.

В данной статье представлена реализация конструкции соосного КМПП со скачкообразным изменением сечения коаксиальных проводников без гермоввода. Его конструкция при помощи пайки и винтов соединяет МПЛ копланарного исполнения (рис. 1, *a*), выполненную из материала Rogers 4350В (толщина 0,254 мм, относительная диэлектрическая проницаемость 3,66), и коаксиальный тракт (рис. 1, δ) с воздушным заполнением сечением 2,4/1,042 мм.

На начальном этапе разработки создавалась ЭМ-модель, для создания которой проводились расчеты – в первую очередь рассчитывалось волновое сопротивление МПЛ и ступеней коаксиального трансформатора.

Волновое сопротивление МПЛ копланарного исполнения может быть рассчитано из следующих соотношений [2–4]:

$$Z_{\text{MJIII}} = \frac{60\pi}{\sqrt{\varepsilon_{\text{eff}}}} \frac{1}{\frac{K(k)}{K(k')} + \frac{K(k_1)}{K(k_1')}}$$

$$k = \frac{w}{w+2g},$$

$$k' = \sqrt{1-k^{2}},$$

$$k_{1} = \frac{\text{th}[\pi w/(4h)]}{\text{th}[\pi(w+2g)/(4h)]},$$

$$k_{1}' = \sqrt{1-k_{1}^{2}},$$

$$k_{1} = \frac{1+\varepsilon_{r1}\frac{K(k')}{K(k)}\frac{K(k_{1})}{K(k_{1}')}}{1+\frac{K(k')}{K(k)}\frac{K(k_{1})}{K(k_{1}')}},$$

где w – ширина полоска; g – зазор; h – высота подложки; ε_{r1} – относительная диэлектрическая проницаемость подложки; ε_{eff} – эффективная диэлектрическая проницаемость; K(k) – полный эллиптический интеграл первого рода:

ξ

а – микрополоскового, *б* – коаксиального

Волновое сопротивление коаксиальной линии передачи круглого сечения вычисляется по формуле

$$Z_{\rm KJI} = \frac{60}{\sqrt{\varepsilon_{r2}}} \ln \frac{D}{d} ,$$

где D – диаметр внешнего проводника; d – диаметр внутреннего проводника; ε_{r2} – относительная ди-

электрическая проницаемость изолятора между проводниками [5].

С её помощью рассчитывались геометрические размеры коаксиальных ступеней перехода.

Учитывая конструктивные требования к КМПП, была рассчитана следующая пара геометрических размеров МПЛ: ширина 0,45 мм и зазор 0,31 мм, их соотношение, а также материал подложки обеспечивают волновое сопротивление копланарной линии 50 Ом. Также стоит отметить необходимость наличия сквозных металлизированных отверстий вдоль линии для правильной работы МПЛ копланарного исполнения.

Электромагнитная модель

При создании ЭМ-модели учитывался тот факт, что на качество КМПП существенное влияние оказывают опорные шайбы, скачкообразные изменения размеров коаксиальной линии, при переходе от одного диаметра внешнего или внутреннего проводника к другому, а также неоднородность, обусловленная переходом от цилиндрического проводника коаксиала к плоскому центральному проводнику МПЛ [4], также во внимание принимались рекомендации, предложенные в [5].

На начальном этапе ЭМ-моделирования рассчитывались коаксиальная (рис. 2, *a*) (включая трансформаторные ступени и диэлектрическую опору, в качестве которой использовалась готовая модель диэлектрической шайбы [6] (рис. 2, *б*)) и микрополосковая (рис. 2, *в*) части перехода; далее части моделировались совместно (рис. 2, *г*). Оптимизация модели перехода проводилась по критерию минимума коэффициента отражения, её результаты представлены на рис. 3. Частотные характеристики оптимизированной модели представлены на рис. 3.

Конструкция КМПП

На основе ЭМ-модели была разработана модель конструкции перехода, учитывающая допуски и особенности производства. В конструкцию входят: корпус, втулка, центральный проводник (ЦП), диэлектрическая шайба. Корпус имеет специальные винтовые крепления (рис. 4), обеспечивающие надежное соединение перехода с печатной платой. Втулка и центральный проводник образуют коаксиальный соединитель (тип I, розетка).

Рис. 2. ЭМ-модели частей КМПП: *а* – коаксиального тракта и диэлектрической шайбы; *б* – диэлектрической шайбы; *в* – микрополосковой линии; *е* – совместная модель двух КМПП, включенных «на проход»

Рис. 4. Конструктивная модель КМПП: *а* – боковое сечение модели, *б* – вид снизу. *1* – ЦП, *2* – корпус; *2а* – винтовые крепления; *3* – втулка; *4* – диэлектрическая шайба

Доклады ТУСУРа, том 20, № 3, 2017

Макетная реализация

На основе электромагнитной и конструкционной модели было произведено несколько КМПП, из них был собран опытный макет (рис. 5), представляющий собой два КМПП, включенных «на проход» через МПЛ копланарного исполнения. В качестве материала подложки использовался Rogers4350B (относительная диэлектрическая проницаемость $\varepsilon_{r1} = 3,66$, тангенс угла, диэлектрических потерь tg δ =0,001, толщина 0,254 мм). На рис. 6 представлены частотные характеристики макета. Измерения проводились с помощью векторного анализатора цепей Agilent PNA-X N5247A.

Рис. 5. Фотография макетного образца для измерения частотных характеристик двух КМПП, включенных «на проход»

Заключение

В результате проделанной работы были разработаны электромагнитная и конструктивная модели сверхширокополосного коаксиально-микрополоскового перехода без гермоввода, с рабочим диапазоном частот 0–50 ГГц, на их основе был изготовлен опытный макет (2 перехода + 2,5 см МП линии), характеристики которого по некоторым параметрам превосходят зарубежные аналоги. Сравнительные характеристики представлены в таблице. Описанная конструкция КМПП может найти применение в разработке СВЧ-блоков, работающих в диапазоне частот от 0 до 50 ГГц и не нуждающихся в герметизации.

Сравнение	основных х	арактеристик	разработанного
	КМПП с п	риведенными в	: [5]

Hanaycomput	КМПП					
параметры	1	2	3	4	5	
Рабочий						
диапазон	0–18	0–18	0–18	0–40	0_50	
частот					0-30	
(ГГц)						
КСВН	1,25	1,14	1,16	1,43	1 22	
(max)					1,44	
Прямые						
потери	0,25	0,13	0,15	0,25	3,8*	
(дБ, max)						

Примечание.

1. КРПГ.434511.015, ФГУП «НПП «Исток», Россия.

2. 2052-1215-02 фирмы М/А-СОМ (Тусо), США.

3. 142-1701-191 фирмы Johnson Components (Emerson), США.

4. 23 SK-50-0-54/199 NE фирмы Huber+Suhner, Швейцария.

5. Предложенный в этой статье КМПП.

*Потери в двух переходах и копланарной линии длиной 2,5 см.

Литература

1. Capsalis C.W. A rigorous analysis of a coaxial shielded microstrip line transition / C.W Capsalis, C.P. Chonopoulos, N.K Vzunoglu // IEEE Trans. – 1989. – Vol. MTT-37, No. 7. – P. 1091–1098.

2. Полосковые линии и устройства сверхвысоких частот (ред. В.М. Седых) / Д.С. Денисов, Б.В. Кондратьев, Н.И. Лесик и др. – Харьков: Вища школа, 1974. – 276 с.

3. Регулярные и нерегулярные многосвязные полосковые и проводные структуры и устройства на их основе: анализ, синтез, проектирование, экстракция первичных параметров / Н.Д. Малютин, А.Н. Сычев, Э.В. Семенов, А.Г. Лощилов. – Томск: ТУСУР, 2012. – 218 с.

4. Сычев А.Н. Комбинированный метод частичных емкостей и конформных отображений для анализа многомодовых полосковых структур. – Томск: ТУСУР, 2007. – 138 с.

5. Wadel B.C. Transmission line design handbook. – Hornwood: Artech house, 1991. – 517 p.

6. Сверхширокополосные микроволновые устройства / А.М. Богданов, М.В. Давидович, Б.М. Кац и др.; под ред. А.П. Креницкого, В.П. Мещанова. – М.: Радио и связь, 2001. – 556 с.

7. Пат. 124059 РФ, МПК Н 01 Р 13/646. Диэлектрическая шайба / О.Ю. Морозов, В.П. Семибратов, В.В. Щуров и др.; заявитель и патентообладатель АО «НПФ Микран». – № 2 012 127 060 / 07, заявл. 26.07.2010; опубл. 10.01.2013. Бюл. № 1.

8. Алексеенков В. Экспериментальное исследование частотной зависимости КСВН коаксиально-микрополос-ковых переходов / В. Алексеенков, А. Верещагин, К. Джу-ринский // Компоненты и технология. – 2008. – № 4. – С. 53.

Хорошилов Евгений Владимирович Инженер отд. элементов СВЧ-тракта департамента информационно-измерительных систем АО «НПФ «Микран», Томск Тел.: +7-952-885-65-29 Эл. почта: horoshilov.ev@micran.ru

Доклады ТУСУРа, том 20, № 3, 2017

Козлов Станислав Валерьевич Инженер отд. элементов СВЧ-тракта Тел.: +7-391-398-76-54 Эл. почта: kozlov@micran.ru

Павлов Сергей Владимирович Начальник отд. элементов СВЧ-тракта Эл. почта: sergey.pavlov@micran.ru

Дроздов Алексей Викторович

Аспирант каф. сверхвысокочастотной и квантовой радиотехники ТУСУРа Тел.: +7-952-882-54-97 Эл. почта: dalvik@micran.ru Khoroshilov Y.V., Kozlov S.V., Pavlov S.V., Drozdov A.V. Ultra-wideband coaxial-microstrip transition with frequency range 0–50 GHz

The article describes the development of an ultra-wideband coaxial-microstrip transition for 2.4/1.04 coaxial and coplanar waveguide with ground, which is designed without using glass bead.

Keywords: coaxial-microstrip transition, reflection coefficient, microstrip line.