УДК 621.378.325

И.А. Паргачёв, Л.Я. Серебренников, А.Е. Мандель, В.А. Краковский, С.М. Шандаров, Г.И. Шварцман

Электрооптические модуляторы лазерного излучения на основе высокоомных кристаллов КТР

Представлены результаты исследований электрооптических модуляторов, основанных на высокоомных кристаллах KTiOPO₄ (KTP). Измеренное полуволновое напряжение модулятора для излучения с длиной волны $\lambda = 1064$ нм составило 600 В, для излучения с длиной волны $\lambda = 633$ нм – 340 В.

Ключевые слова: электрооптический модулятор, кристаллы КТР, высокоомный КТР, полуволновое напряжение, модуляция добротности.

Кристаллы титанил-фосфата калия КТіОРО₄ (КТР) благодаря высоким нелинейно-оптическим и электрооптическим свойствам используются для электрооптической модуляции мощного лазерного излучения [1–4].

Кристаллы КТР обладают высокой оптической однородностью, низкими потерями и относительно высоким порогом оптического разрушения (превышает 600 MBт/см²) [4]. Невысокие значения коэффициента электромеханической связи определяют низкий уровень «пьезозвона» при импульсном управлении, что позволяет использовать их для модуляции излучения в килогерцовом диапазоне частот [4]. Однако высокая ионная проводимость ($10^{-6} - 10^{-8}$ Om⁻¹см⁻¹ вдоль оси *z* кристалла) ограничивает использование монокристаллов КТР в электрооптике из-за электрохромной деградации кристаллов в электрических полях [4, 5]. Так, при напряженности поля порядка 200–500 В/см наблюдается поглощение света в приэлектродных областях, а при повышении напряженности до 1,0 кВ/см происходит необратимое расширение областей интенсивного почернения с течением времени [4, 5].

В данной работе проведено исследование характеристик электрооптических модуляторов на основе высокоомных кристаллов КТР, обогащенных калием. Такие кристаллы имеют повышенные показатели порога оптической прочности (до 3 ГВт/см²) и обладают низкой ионной проводимостью (порядка $10^{-11} - 10^{-12} \text{ Om}^{-1} \text{ сm}^{-1}$) [6].

Конструктивно экспериментальный образец модулятора был изготовлен на двух кристаллах КТР размерами $2,0\times2,0\times10,0$ мм. Оси z кристаллов были развернуты относительно друг друга на 90° (термокомпенсированная схема). Излучение в кристаллах КТР распространялось вдоль оси y, а управляющее напряжение прикладывалось вдоль оси z кристалла. Направление поляризации излучения составляло угол 45° с осями x и z. Для суммирования индуцированного набега фаз векторы напряженности управляющего поля в кристаллах имели противоположные направления.

Для каждого модулятора были подобраны два кристалла с близкими характеристиками пропускания излучения от приложенного управляющего напряжения (рис. 1). Для измерения характеристики пропускания кристаллов образец помещался между двумя скрещенными поляризаторами.

I, MA 600 400 200 0 500 1000 1500 2000 U, B

Интенсивность прошедшего кристалл излучения регистрировалась фотодиодом, подключенным к цифровому микроамперметру.

Рис. 1. Характеристика пропускания излучения от приложенного управляющего напряжения для двух подобранных кристаллов (λ = 633 нм)

На первом этапе исследований измерялось полуволновое напряжение модуляторов на длине волны $\lambda = 633$ нм. Оптическая схема установки для измерения полуволнового напряжения представлена на рис. 2. В качестве источника излучения использовался He-Ne лазер с круговой поляризацией *1*.

Модулятор 3 устанавливался между двумя скрещенными поляризаторами 2, 4. Управляющее напряжение подавалось от источника высоковольтного постоянного напряжения 5. Управляющее напряжение изменялось в диапазоне от 100 до 1200 В с дискретностью 20 В. Прошедшее кристалл излучение регистрировалось фотодиодом, подключенным к цифровому микроамперметру. Типичная зависимость интенсивности прошедшего модулятор света от прикладываемого напряжения приведена на рис. 3.

- Рис. 2. Оптическая схема установки для измерения полуволнового напряжения модулятора:
- *1* Не-Ne лазер; 2, 4 поляризаторы; 3 модулятор; 5 - источник высокого напряжения;
 - 6 фотодиод; 7 цифровой микроамперметр

В наших экспериментах соотношения максимума и минимума прошедшего модулятор излучения составляло величину не менее 20 дБ. На основе проведенных экспериментов было определено полуволновое напряжение на длине волны $\lambda = 633$ нм, которое составило 340 В.

Для измерения полуволнового напряжения модулятора на длине волны λ =1064 нм была собрана экспериментальная установка, приведенная на рис. 4. В качестве источника излучения использовался Nd:YAG лазер, работающий в импульсном режиме 1. Частота следования импульсов составляла 10 кГц при длительностью импульса 10 нс. Излучение лазера было линейно поляризованным. В качестве анализатора использовалась поляризационная призма 4 установленная после электрооптического модулятора 2. Излучение регистрировалось с помощью болометра 5.

В экспериментах изменения постоянного управляющего напряжения осуществлялось в диапазоне 100-2000 В с интервалом 50 В. Типичная зависимость интенсивности прошедшего модулятор излучения от прикладываемого напряжения приведена на рис. 5. Из полученных зависимостей было определено полуволновое напряжение модулятора для излучения с длиной волны $\lambda = 1064$ нм, которое составило 600 В. Расчетное полуволновое напряжение для модулятора с высокоомными кристаллами КТР на длине волны $\lambda = 1064$ нм составило 618 В [7].

Рис. 4. Оптическая схема установки для измерения полуволнового напряжения модулятора: *1* – импульсный Nd:YAG лазер; 2 – модулятор; 3 – источник высокого напряжения: 4 – поляризационная призма; 5 - болометр L30A-SH-V1

Необходимо отметить, что модуляторы работали неограниченно долгое время без следов электрохромной деградации кристаллов.

Таким образом, результаты проведенных исследований показывают перспективность использования высокоомных кристаллов КТР в электрооптических модуляторах.

Работа выполнена при финансовой поддержке программ «Развитие научного потенциала высшей школы (2009–2010 годы)» и ФЦП «Научные и научно-педагогические кадры инновационной России» (Гос. контракт № 02.740.11.0553).

Литература

1. Bierlen J.D. Potassium Titanyl Phosphate: Properties and New Applications / J.D. Bierlen, H. Vanherzeele // JOSA. B. – 1989. – Vol. 6, № 4. – P. 622–633.

2. Ebbers C.A. High Average Power KTiOPO4 electrooptic Q-sqitch / C.A. Ebbers, S.P. Velsko // Appl. Phys. Lett. – 1995. – Vol. 67, № 5. – P. 593–595.

3. Roth M. Oxide Crystals for Electro-Optic Q-Switching of Lasers / M. Roth, M. Tseitlin, N. Angert // Glass Physics and Chemmistry. – 2005. – Vol. 31, № 1. – P. 86–95.

4. Применение модуляторов на кристаллах КТР в Nd:YAG-лазерах с высокой средней мощностью / В.А. Русов, В.А. Серебряков, А.Б. Каплун, А.В. Горчаков // Оптический журнал – 2009. – Т. 76, № 6. – С. 6–7.

5. Электрохромный эффект в кристаллах титанат-фосфата / В.В. Лемешко, В.В. Обуховский, А.В. Стоянов и др. // Укр. физич. журнал. 1986. – Т. 31, № 11. – С. 1747–1750.

6. Кристаллы семейства КТР [Электронный ресурс]. – Режим доступа: http://crystalt.ru/index.php/ru/productsru/24-crystals1ru, свободный (дата обращения: 07.09.2011).

7. Ярив А., Юх П. Оптические волны в кристаллах: пер. с англ. – М.: Мир, 1987. – С. 303–310.

Паргачёв Иван Андреевич

Аспирант каф. электронных приборов (ЭП) ТУСУРа Тел.: 8-913-862-69-00 Эл. почта: underfin@mail.ru

Серебренников Леонид Яковлевич

Канд. техн. наук, доцент каф. ЭП ТУСУРа

Мандель Аркадий Евсеевич

Д-р физ.-мат. наук, профессор каф. сверхвысокочастотной и квантовой радиотехники (СВЧ и КР) ТУСУРа

Краковский Викрор Адольфович

Д-р техн. наук, директор ООО «Кристалл Т»

Шандаров Станислав Михайлович

Д-р физ.-мат. наук, профессор, зав. каф. ЭП ТУСУРа

Шварцман Григорий Исаакович Канд. техн. наук, доцент каф. ЭП ТУСУРа

Pargachev I.A., Serebrennikov L.Y., Mandel A.E., Krakowsky V.A., Shandarov S.M., Shvartzman G.I. Electro-optic modulators of laser radiation on the basis of high-resistance KTP crystals

The results of investigations of electro-optic modulators based on high-resistance crystals KTiOPO4 (KTP) are represented. The measured half-wave voltage of the modulator for laser radiation with a wavelength $\lambda = 1064$ nm was 600 V, for laser radiation with a wavelength $\lambda = 633$ nm – 340 V. **Keywords:** electrooptic modulators, KTP crystals, high-resistance KTP, half-wave voltage, Q-switching.