УДК 621.372:621.375

Г.Н. Якушевич

Алгоритм расчета транзисторного широкополосного усилителя с двухполюсником параллельной обратной связи

Предложен алгоритм расчета транзисторного широкополосного усилителя на основе математической модели активного четырехполюсника для широкополосного усилителя с двухполюсником параллельной обратной связи (ОС). Предложена обобщенная структурная схема активного четырехполюсника, представленного активным элементом, на входе или выходе которого включена симметрирующая цепь (СЦ) и фазирующетрансформирующие цепи (ФТЦ) на входе и выходе.

Ключевые слова: алгоритм, математическая модель, активный четырехполюсник, широкополосный усилитель, двухполюсник, параллельная ОС.

Введение

При проектировании транзисторных широкополосных усилителей для выравнивания амплитудно-частотных характеристик и согласования применяются цепи параллельной OC. Известные алгоритмы проектирования и расчета усилителя в этом случае состоят в поиске структуры и параметров элементов цепи двухполюсника параллельной OC, обеспечивающих заданные условия согласования, необходимую полосу пропускания, коэффициент усиления. При этом зачастую цепь OC получается сложной структуры. В [1-2] было показано, что при использовании простейших структур цепей двухполюсников OC необходимо с помощью ФТЦ и фазирующих цепей (ФЦ) приблизить параметры активного элемента к требуемым параметрам активного четырехполюсника для каскада широкополосного усилителя с двухполюсником параллельной OC. В данной работе для приближения параметров активного элемента к требуемым параметрам активного четырехполюсника предложена обобщенная структурная схема активного четырехполюсника, представленного актив-ным элементом, на входе или выходе которого включена СЦ и ФТЦ на входе и выходе.

Требуемые S-параметры активного четырехполюсника для широкополосного каскада с двухполюсником параллельной OC

Математическая модель в виде аналитических выражений для требуемых Sпараметров и номинального коэффициента передачи по мощности идеально однонаправленного активного четырехполюсника для согласованного каскада широкополосного усилителя с двухполюсником параллельной ОС, представленного на рис. 1, запишется [1]

$$S_{11AY} = S_{22AY} = \frac{Y_{OC} \cdot (1 - S_{21OC})}{2 - Y_{OC} \cdot (1 - S_{21OC})} , \qquad (1)$$

$$S_{21\,\text{AV}} = \frac{2 \cdot (2 \cdot S_{21\,\text{OC}} - Y_{\text{OC}} \cdot (1 - S_{21\,\text{OC}}^2))}{(2 - Y_{\text{OC}} \cdot (1 - S_{21\,\text{OC}}))^2} , \qquad (2)$$

$$G_{\rm HOMAH} = |S_{21}|^2 / \left(1 - |S_{11AH}|^2\right)^2$$
, (3)

где S_{11A4} , S_{22A4} , S_{21A4} , $G_{HOM A4}$, S_{21OC} , Y_{OC} – коэффициенты отражения по входу и выходу, прямой коэффициент передачи, номинальный коэффициент передачи по мощности активного четырехполюсника, прямой коэффициент передачи каскада широкополосного усилителя с параллельной ОС и проводимость двухполюсника параллельной ОС.

Считая широкополосный усилитель с параллельной ОС идеальным, обладающим равномерной амплитудно-частотной характеристикой (АЧХ) и линейной фазочастотной характеристикой (ФЧХ), т.е.

$$S_{21\,\text{OC}}(f) = \text{const} \quad \text{in} \quad \Theta_{21\text{OC}} = \arg S_{21\,\text{OC}}(f) = 180^{\circ} \cdot (1 - f/f_{\text{B}}), \tag{4}$$

где f – текущая частота; $f_{\rm B}$ – частота нормировки; задавая значение коэффициента передачи в виде $S_{21\,{
m OC}} = \left|S_{21\,{
m OC}}\right| \cdot \exp(i \cdot \Theta_{21\,{
m OC}})$ для заданной структуры двухполюсника параллельной ОС по соотношениям (1)–(3), можно рассчитать требуемые зависимости S-параметров и номинального коэффициента передачи по мощности $G_{\rm HOM}$ активного четырехполюсника без двухполюсника параллельной ОС.

Из выражения (1) видно, что для согласования с помощью двухполюсника параллельной ОС активный четырехполюсник должен иметь одинаковые коэффициенты отражения по входу и выходу.

Рис. 1. Активный четырехполюсник с двухполюсником параллельной ОС

На низкой частоте коэффициенты отражения по входу и выходу активного четырехполюсника близки к единице ($S_{11 AY} = S_{22AY} = 1$) и для согласованного каскада широкополосного усилителя с параллельной ОС проводимость резистивного *R*-двухполюсника ОС из выражения (1) равна

$$Y_{\text{OC}R} = 1/(1 + |S_{21\text{OC}}|).$$
 (5)

Тогда из выражения (2) с учетом (5) по низкочастотному значению модуля коэффициента передачи активного четырехполюсника $S_{21AY}(180^\circ)$ можно определить максимально достижимое значение модуля коэффициента передачи широкополосного усилителя с двухполюсником параллельной ОС в следующем виде:

$$\left|S_{21\,\text{OC}}\right| = \left|S_{21\,\text{A}\text{Y}}\left(180^{\circ}\right)\right| / 2 - 1\,. \tag{6}$$

В общем случае зависимости S-параметров активного элемента отличаются от требуемых зависимостей S-параметров активного четырехполюсника, рассчитанных по выражениям (1)-(3), и для получения одинаковых коэффициентов отражения на входе и выходе активного элемента необходимо включать СЦ, а для получения требуемого значения модуля и фазы коэффициента передачи – ФТЦ.

Обобщенная структурная схема для широкополосного усилителя с двухполюсником параллельной ОС на основе активного элемента с ФТЦ и СЦ на входе и выходе представлена на рис. 2, a. Однако при расчете даже простейших СЦ имеется множество решений. Поэтому в данной работе рассмотрены только варианты включения СЦ на входе или выходе активного элемента (см. рис. 2, δ , e). Вариант включения СЦ выбирается на основе анализа коэффициентов отражения по входу и выходу активного элемента и СЦ вводится там, где наибольшее отличие от требуемых коэффициентов отражения активного четырехполюсника.

Рис. 2. Обобщенные структурные схемы активных четырехполюсников:

 $a - \Phi T \amalg$ и СЦ на входе и выходе активного элемента; $\delta - \Phi T \amalg$ и СЦ на входе и $\Phi T \amalg$ на выходе активного элемента;

в – ФТЦ на входе и ФТЦ и СЦ на выходе активного элемента

Расчет СЦ на входе или выходе активного элемента

Рассмотрим структурные схемы активного элемента с простейшими *L*- или Г-образными СЦ без потерь, включенными на входе или выходе активного элемента, представленные на рис. 3.

 Γ -образная СЦ (см. рис. 3, *в*, г) понижает, а *L*-образная СЦ (см. рис. 3, *a*, *б*) повышает сопротивление источника, подключенного к их входу. Поэтому выбор структурной схемы активного четырехполюсника зависит от коэффициентов отражения по входу и выходу активного элемента.

Рис. 3. Схемы активного элемента с L- и Γ -образными СЦ включенными на выходе (a, c)или входе (b, c) активного элемента

Учитывая, что Γ - и L-образные СЦ состоят из реактивных элементов, найдем S-параметры активного элемента с СЦ и приравнивая коэффициенты отражения по входу и выходу, получим уравнение

$$W_{\rm XB} \cdot X \cdot B + W_{\rm X} \cdot i \cdot X + W_{\rm B} \cdot i \cdot B + W_{\rm O} = 0, \qquad (7)$$

где $i=\sqrt{-1}$, X и B – нормированные сопротивление и проводимость СЦ.

Из выражения (7) запишем систему уравнений:

$$\operatorname{Re}(W_{XB}) \cdot X \cdot B - \operatorname{Im}(W_X) \cdot X - \operatorname{Im}(W_B) \cdot B + \operatorname{Re}(W_O) = 0,$$

$$\operatorname{Im}(W_{XB}) \cdot X \cdot B + \operatorname{Re}(W_X) \cdot X + \operatorname{Re}(W_B) \cdot B + \operatorname{Im}(W_O) = 0.$$
(8)

где

$$W_{XB\left(\frac{\Gamma BX, (LBX)}{\Gamma BbIX, (LBBIX)}\right)} = \mp \left[(S_{11(22)} - 1) \cdot (1 + S_{22(11)}) - S_{12} \cdot S_{21} \right]$$

$$W_{X\left(\frac{\Gamma BX, \Gamma BbIX}{LBX, LBBIX}\right)} = \mp \left[(S_{11} - 1) \cdot (S_{22} - 1) - S_{12} \cdot S_{21} \right]$$

$$W_{B\left(\frac{\Gamma BX, \Gamma BbIX}{LBX, LBBIX}\right)} = \pm \left[(1 + S_{11}) \cdot (1 + S_{22}) - S_{12} \cdot S_{21} \right]$$

$$W_{O\left(\frac{\Gamma BbIX, L BX}{\Gamma BX, LBBIX}\right)} = \pm 2 \cdot (S_{11} - S_{22})$$

$$(9)$$

Верхний знак \mp и \pm относится к верхним индексам, а нижний – к нижним индексам в скобках; г вх и L вх – индексы для расчета СЦ на входе активного элемента, г вых и L вых – индексы для расчета СЦ на выходе активного элемента, S_{11} , S_{12} , S_{21} , S_{22} – S-параметры активного элемента.

Решение системы уравнений (8) относительно элементов СЦ проводимости *В* и сопротивления *X* запишется

$$B_{1,2} = \frac{-\operatorname{Im}(\overline{W_{XB}} \cdot W_O + \overline{W_B} \cdot W_X)}{2 \cdot \operatorname{Re}(\overline{W_{XB}} \cdot W_B)} \pm \sqrt{\left(\frac{\operatorname{Im}(\overline{W_{XB}} \cdot W_O + \overline{W_B} \cdot W_X)}{2 \cdot \operatorname{Re}(\overline{W_{XB}} \cdot W_B)}\right)^2 - \frac{\operatorname{Re}(\overline{W_O} \cdot W_X)}{2 \cdot \operatorname{Re}(\overline{W_{XB}} \cdot W_B)}}, \quad (10)$$

$$X_{1,2} = \frac{\text{Re}(W_0) - B_{1,2} \cdot \text{Im}(W_B)}{B_{1,2} \cdot \text{Re}(W_{XB}) + \text{Im}(W_X)} , \qquad (11)$$

где $\overline{W_{XB}}$, $\overline{W_B}$, $\overline{W_O}$ – комплексно-сопряженные коэффициенты W_{XB} , W_B , W_O .

В зависимости от знака нормированных значений *B* и *X* на частоте ω и для сопротивления тракта *R* определяются значения номиналов индуктивности *L* или емкости *C*: для X > 0 – индуктивность $L = X \cdot R/\omega$; для X < 0 – емкость $C = -1/(\omega \cdot X \cdot R)$; для B > 0 – емкость $C = B/(\omega \cdot R)$; для B < 0 – индуктивность $L = R/(\omega \cdot R)$; для B < 0 – индуктивность $L = -R/(\omega \cdot R)$.

Расчет каскада широкополосного усилителя с двухполюсником параллельной ОС на максимальный коэффициент передачи

Алгоритм расчета ориентирован на максимальное приближение зависимостей S-параметров активного элемента к требуемым зависимостям S-параметров активного четырехполюсника для широкополосного усилителя с двухполюсником параллельной ОС и заключается в следующем:

1) для заданного типа транзистора на основе низкочастотного значения модуля коэффициента передачи по формуле (6) определяется максимально достижимое низкочастотное значение модуля коэффициента передачи каскада с параллельной ОС $|S_{210C}|$ и по выражениям (1)-(3) с учетом (4)-(5) рассчитываются требуемые зависимости S-параметров и номинального коэффициента передачи по мощности $G_{\rm HOM}$ A4 активного четырехполюсника;

2) строим зависимости S-параметров и номинального коэффициента передачи по мощности активного элемента и активного четырехполюсника для широкополосного усилителя с двухполюсником параллельной ОС;

3) на основе равенства номинального коэффициента передачи по мощности активного четырехполюсника $G_{\rm HOM \, AY}(0^{\circ})$ и номинального коэффициента передачи по мощности активного элемента определяется верхняя граничная частота каскада широкополосного усилителя;

4) на верхней граничной частоте проводится выбор варианта включения (СЦ на входе или выходе), выбор структуры (Г-образная или *L*-образная СЦ), расчет элементов СЦ и расчет *S*-параметров активного элемента с СЦ;

5) затем сравниваются зависимости S-параметров активного элемента с СЦ с требуемыми зависимостями S-параметров активного четырехполюсника и на основе сравнения на входе и выходе активного элемента с СЦ вводятся ФТЦ, уточняется структура двухполюсника параллельной ОС;

6) проводится расчет S-параметров широкополосного усилителя с двухполюсником параллельной OC.

Применим этот алгоритм к расчету каскада широкополосного усилителя на транзисторе КТ3115, работающего в линейном режиме.

В таблице приведены значения S-параметров транзистора КТ3115 и рассчитанного по ним номинального коэффициента передачи $G_{\rm HOM}$ для инвариантного коэффициента устойчивости $K_{\rm yC} = 1,1.$

По низкочастотному значению коэффициента передачи транзистора КТЗ115 из таблицы определим по формуле (6) максимально достижимое низкочастотное значение модуля коэффициента передачи каскада с параллельной ОС $|S_{21\,\text{OC}}|=9,9$ (20 дБ) и по формуле (5) нормированную проводимость двухполюсника параллельной ОС $Y_{\text{OC}} = 1/11$ (сопротивление двухполюсника параллельной ОС для 50-омного тракта равно 550 Ом).

F, ГГц	$ S_{11} $	Θ_{11} , град	<i>S</i> ₁₂ , дБ	Θ_{12} , град	₂₁ , дБ	Θ_{21} , град	$ S_{22} $	⊖ ₂₂ , град	$G_{ m HOM}$,дБ
0,01	0,78	-3	59,2	89	26,8	178	0,99	-1	40
0,1	0,76	-26	39.2	78	26,6	168	0,97	-10	31
0,4	0,56	-84	29,2	56	22,8	123	0,75	-25	24
0,8	0,43	-128	27,5	52	18,4	99	0,61	-29	21
1,2	0,39	-154	25,8	54	15,3	86	0,56	-32	18,6
1,6	0,37	-172	24,2	57	13,1	75	0,54	-35	16,8

S-параметры и G_{HOM} транзистора КТЗ115

Рассчитанные по выражениям (1)–(3) с учетом (4)–(5) требуемые зависимости S-параметров и номинального коэффициента передачи по мощности активного четырехполюсника $G_{\text{HOM AY}}$ для $|S_{21 \text{ OC}}| = 20$ дБ и зависимости S-параметров и номинального коэффициента передачи по мощности транзистора $G_{\text{HOM KT3115}}$ из таблицы приведены на рис. 4,5.

Сравнивая номинальные коэффициенты передачи активного четырехполюсника $G_{\rm HOM \ A^{\rm H}}(0^{\circ})$ и транзистора $G_{\rm HOM \ KT3115}$ на рис. 5, определяем верхнюю граничную частоту каскада широкополосного усилителя 1,2 ГГц.

На верхней граничной частоте 1,2 ГГц наиболее сильно отличаются от требуемых значений коэффициент отражения транзистора КТЗ115 по выходу S_{22 КТЗ115} (см. рис. 4) и значение фазы коэффициента прямой передачи транзистора $\theta_{21 \text{ KT3115}} = 86^{\circ}$ (см. рис. 5).

Для приближения коэффициента отражения S_{22 КТ3115} к требуемым S-параметрам активного четырехполюсника и уменьшения выходного сопротивления транзистора на его

выходе вводится Г-образная СЦ. Нормированные значения элементов Г-образной СЦ, рассчитанные по выражениям (10)–(11), равны: $X_1 = 1,0$ (L = 6,7 нГн), $B_1 = 0,55$ (C=1,45 пФ) и $X_2 = -1,25$ (C=2,63 пФ), $B_2 = 0,55$ (L = 4,86 нГн). Для каскада широкополосного усилителя выбираем Г-образную СЦ с элементами L = 6,7 нГн и C = 1,45 пФ.

67

На рис. 4 приведены результаты расчета коэффициентов отражения $S_{11 \text{ KT3115 CU}}$ и $S_{22 \text{ KT3115 CU}}$, а на рис. 5 – коэффициента прямой передачи $S_{21 \text{ KT3115 CU}}$ транзистора КТ3115 с Γ -образной СЦ на выходе.

Рис. 4. Зависимости коэффициентов отражения

Рис. 5. Зависимости коэффициентов прямой передачи и по мощности

Для приближения фазы коэффициента прямой передачи транзистора $S_{21 \text{ KT3115 CII}}$ к требуемому значению фазы $S_{21 \text{ AY}}$ (см. рис. 5) на входе и выходе вводим ФТЦ в виде полосковых линий с волновым сопротивлением 50 Ом и электрической длиной $\theta = 12^{\circ}$.

На рис. 6 приведена схема для численного моделирования каскада широкополосного усилителя с R-двухполюсником параллельной ОС с учетом сопротивления цепи питания, равного 1 кОм, а на рис. 4-5 – результаты расчета коэффициентов отражения $S_{11 \text{ OC}}$, S_{22} _{ОС} и прямой передачи $S_{21 \text{ OC}}$. Для экспериментальных исследований был собран каскад широкополосного усилителя на транзисторе КТЗ115 с использованием чип-элементов. Результаты расчета и эксперимента приведены на рис. 7.

Рис. 6. Каскад широкополосного усилителя с *R*-двухполюсником ОС

S_{210C}, дБ

 $|S_{110C}|, |S_{220C}|$

Рис. 7. Коэффициенты передачи (а) и отражения (б) усилителя с ОС

Полученные результаты

Предложен алгоритм расчета каскада транзисторного широкополосного усилителя с двухполюсником параллельной ОС, основанный на том, что прежде чем ввести двухполюсник параллельной ОС необходимо приблизить S-параметры данного активного элемента на основе выбора варианта включения СЦ (на входе или выходе), структуры СЦ (Γ - или L-образной) и ФТЦ к требуемым S-параметрам активного четырехполюсника для каскада широкополосного усилителя с двухполюсником параллельной ОС.

Литература

1. Якушевич Г.Н. Математическая модель активного четырехполюсника для широкополосного СВЧ-усилителя с двухполюсником параллельной обратной связи // Доклады ТУСУРа. – 2009. – № 2(20). – С. 32–37.

2. Jakushevitch G.N. A new approach to the wide band UHF amplifiers with feedback design// 1998 4th International conference on actual problems of electronic engineering proceedings 'APEIE-98'. – Novosibirsk: Novosibirsk State Technical University, – 1998. – Vol. 1. – P. 295–296.

Якушевич Геннадий Николаевич

Канд. техн. наук, с.н.с., доцент каф. средств радиосвязи ТУСУРа Тел.: 41-37-09 Эл. почта: mrc@main.tusur.ru

Jakushevitch G.N. Calculation algorithm of a wideband amplifier with two-pole parallel feedback

There is suggested an algorithm of a wideband amplifier calculation on the basis of an active four-pole for a wideband amplifier with two-pole parallel feedback (FB). There is also suggested a generalized structure circuit of the active four-pole presented by an active element with a balance circuit at the input or the output and the phase shifting circuits at the input and at the output.

Keywords: algorithm, mathematical model, active four-pole, wideband amplifier, two-pole, parallel feedback.