УДК 628.9:519.6

Ю.С. Жидик, П.Е. Троян, Д.Д. Каримбаев

Расчет теплоотводящего и несущего покрытия при изготовлении светодиодов

Приведена оценка влияния толщины слоя инвара, вводимого между медной подложкой и гетероструктурой светодиода повышенной мощности на компенсацию возникающих механических напряжений в структуре.

Ключевые слова: температурный коэффициент линейного расширения, механические напряжения, тепловой поток, вектор перемещений.

Светодиоды известны как эффективные, малогабаритные источники света. Необходимость повышения мощности для увеличения светового потока привела к тому, что традиционная форма корпусного светодиода перестала удовлетворять из-за недостаточного теплоотвода [1].

Конфигурация, размеры и материалы светодиода, а также площадь теплоотводящего элемента, должны быть выбраны так, чтобы температура активного слоя была существенно меньше по сравнению с максимально допустимой для данной гетероструктуры.

В связи с этим в технологии изготовления светодиодов используют медную подложку, выполняющую роль теплоотвода. Для согласования температурных коэффициентов линейного расширения медной подложки и гетероструктуры необходимо ввести дополнительный слой сплава инвара.

Введение слоя инвара позволяет хорошо согласовать температурные коэффициенты линейного расширения, так как коэффициент линейного расширения инвара обладает крайне малым значением. При температуре от -100 до +100 °C он может считаться почти постоянным и близко равным нулю. Эффект исчезновения теплового расширения инвара возникает в связи с тем, что магнитострикция точно компенсирует тепловое расширение. Это означает, что механические напряжения между подложкой и установленным на ней кристаллом минимальны.

Решения указанной проблемы слабо отражены в зарубежной и отечественной литературе, и поэтому необходимо проведение экспериментальных и расчетных исследований по созданию теплоотводящего и несущего покрытия при изготовлении светодиодов повышенной мощности.

Задачей данного этапа исследования является определение оптимальной толщины слоя инвара, согласующего тепловые коэффициенты линейного расширения гетероструктуры и металлической подложки, либо принятие решения при изготовлении светодиода инвар не использовать.

Расчёты производились в моделирующем комплексе ANSYS [2–4]. В данном комплексе расчёт проводился сначала решением задачи уравнениями теплопроводности с учетом граничных условий, а затем в соответствии с известными соотношениями теории упругости были определены деформации и напряжения в слоях модельной структуры чипа светодиода (рис. 1), возникающих при его тепловом нагреве.

Задаваемые геометрические размеры чипа: длина и ширина 1 мм; толщина слоя меди 60 мкм; толщина GaN 7 мкм; толщина инвара варьируется от 0,2 до 15 мкм. Параметры материалов, используемых для расчёта, приведены в табл. 1 [5].

Рис. 1. Модельная структура чипа светодиода

Создаем геометрическую модель чипа (см. рис. 1) и разбиваем ее поверхностной сеткой на конечные элементы (400 шт., каждый площадью $2,5 \cdot 10^{-9} \text{ м}^2$). Далее накладываем граничные условия на полученную модель.

1. В активном слое (GaN объемом 7·10⁻⁴ см³) задаём энерговыделение мощностью 1 Вт.

2. На нижней свободной плоскости медного слоя задаем фиксированную температуру 110 °С, считая, что температура будет поддерживаться за счет отвода тепла и его рассеивания, допустим на

радиаторе. Также задаем перемещение этой плоскости по оси *Z*, равное 0,считая, что эта плоскость чипа будет зафиксирована на печатной плате.

3. На оставшихся боковых поверхностях чипа задаем условия конвекции и теплового излучения. Моделирующий комплекс ANSYS для получения решения использует соответствующие уравнения теплопроводности

$$\Phi = \alpha \cdot S \cdot (Ts - Ta), \tag{1}$$

где Φ – тепловой поток за счет конвекции; *S* – площадь поверхности нагретого тела; α – коэффициент теплопередачи; *Ts* – температура граничной теплоотводящей среды; *Ta* – температура поверхности нагретого тела.

$$\Phi = W \cdot \lambda = 5,669 \cdot 10^{-8} \cdot \varepsilon \cdot S \cdot \left(Ts^4 - Ta^4\right),\tag{2}$$

где *W*·λ – поток теплового излучения; *ε* – коэффициент излучения; *Ts* – температура поверхности нагретого тела; *Ta* – температура окружающей среды; *S* – площадь излучающей тепло поверхности.

Таблица 1

Параметры используемых материалов							
Параметры	Медь	Инвар	GaN				
Плотность, кг/м ³	8960	8130	6150				
Модуль Юнга, Па	$1,23 \cdot 10^{11}$	$1,35 \cdot 10^{11}$	$3,62 \cdot 10^{11}$				
Коэффициент Пуассона	0,35	0,25	0,24				
Коэффициент линейного расширения, м/К	$1,67 \cdot 10^{-5}$	$1,5.10^{-6}$	4,6.10-6				
Теплоемкость, Дж/(кг·К)	385	450	345				
Теплопроводность Вт/(м·К)	401	11	130				
Степень черноты	0,04	0,07	0,04				
Удельное сопротивление, Ом м	$1,7.10^{-8}$	$6,7.10^{-7}$	_				

Задавая различную толщину инвара (от 0,2 до 15 мкм) и пользуясь вышеуказанными уравнениями (1) и (2) и соотношениями теории упругости, были получены следующие величины, рассчитанные на один конечный элемент модельной сетки (табл. 2): вектора теплового потока (*Tstr*), механические напряжённостей (Q), вектор суммарных перемещений (Δ) узлов сетки и вектор их перемещений только по оси Z.

Таблица 2

тасчетные значения сравниваемых параметров чипа со слоем инвара									
Толщина слоя инвара, мкм	0,5	0,8	1	2	3	4			
Tstr _{max} $\times 10^6$, BT/(M ² ·K)	-1,40	-1,40	-1,40	-1,40	-1,40	-1,40			
Tstr _{min} $\times 10^5$, BT/(M ² ·K)	-3,50	-3,50	-3,50	-3,50	-3,50	-3,50			
$Q_{\rm max} \times 10^9$, Па	3,97	3,96	3,94	3,88	3,82	3,77			
$Q_{\rm min} \times 10^8$, Πa	1,17	1,18	1,18	1,20	1,21	1,24			
Δ _{max} ×10 ⁻⁶ , м	9,79	9,34	9,64	8,95	8,84	8,81			
$\Delta_{\min} \times 10^{-7}$, м	0,59	1,20	3,02	1,01	0,92	1,27			
$\Delta Z \times 10^{-6}$, м	-1,38	-1,39	-1,39	-1,41	-1,43	-1,45			

Расчётные значения сравниваемых параметров чипа со слоем инвара

Продолжение табл. 2

Толщина слоя инвара, мкм	5	7,5	10	12,5	15
Tstr $_{max} \times 10^6$, BT/($M^2 \cdot K$)	-1,40	-1,40	-1,40	-1,40	-1,40
<i>Tstr</i> min $\times 10^5$, BT/(M ² ·K)	-3,50	-3,50	-3,50	-3,50	-3,50
$Q_{\text{max}} \times 10^9$, Πa	3,71	3,58	3,45	3,32	3,20
$Q_{\min} \times 10^8$, Πa	1,26	1,33	1,41	1,50	1,59
$\Delta_{\text{max}} \times 10^{-6}$, м	8,94	8,51	8,50	8,28	8,11
$\Delta_{\min} \times 10^{-7}$, M	3,16	0,64	2,15	1,51	1,28
$\Delta Z \times 10^{-6}$, M	-1,46	-1,51	-1,54	-1,57	-1,60

Для сравнения рассчитанных параметров и определения наиболее оптимальной толщены слоя инвара найдем их значение, заменив слой инвара таким же по толщине слоем меди (табл. 3).

Таблица 3

Толщина дополнитель-	0.5	0.8	1	2	3	4	5	75	10	12.5	15
ного слоя меди, мкм	0,5	0,0	1	2	5	т	5	7,5	10	12,5	15
<i>Tstr</i> _{max} $\times 10^6$, BT/(M ² ·K)	-1,40	-1,40	-1,40	-1,40	-1,40	-1,40	-1,40	-1,40	-1,40	-1,40	-1,40
$Tstr_{min} \times 10^5$, BT/(M ² ·K)	-3,50	-3,50	-3,50	-3,50	-3,50	-3,50	-3,50	-3,50	-3,50	-3,50	-3,50
$Q_{\rm max} \times 10^9$, Па	4,01	4,02	4,02	4,03	4,05	4,06	4,08	4,11	4,14	4,17	4,19
$Q_{\min} \times 10^8$, Па	1,12	1,09	1,07	0,98	0,90	0,84	7,83	7,05	7,19	8,48	9,75
$\Delta_{\text{max}} \times 10^{-6}$, м	9,10	9,50	9,38	9,69	9,25	9,18	9,33	9,24	9,39	9,38	9,49
$\Delta_{\min} \times 10^{-7}$, м	0,88	4,20	3,52	3,19	1,81	1,05	2,63	1,15	2,00	1,35	2,06
$\Delta Z \times 10^{-6}$, M	-1,38	-1,39	-1,39	-1,41	-1,43	-1,45	-1,47	-1,52	-1,57	-1,63	-1,68

Расчётные з	внячения с	павниваемых	папаметнов	чипа б	ез с поя в	инвара
I at it indit i	пачения с	рабнивастви	napamerput	o anna u	сэ слол в	прара

По полученным результатам для наглядности оговоренных зависимостей приведены гистограммы распределения (рис. 2 – 4).

Рис. 2. Гистограмма распределения приращения напряженности $Q_{\text{max}} - Q_{\text{min}}$

Рис. 3. Гистограмма распределения приращения вектора суммарных перемещений $\Delta_{max} - \Delta_{min}$

Рис. 4. Гистограмма распределения вектора суммарных перемещений Δ по оси Z

На гистограмме распределения $Q_{\text{max}} - Q_{\text{min}}$ (см. рис. 2) хорошо видно, что с увеличением толщины слоя инвара диапазон возникающих механических напряженностей существенно уменьшается, причем эта зависимость близка к линейной. Из рис. 3 и 4 видно, что приращение вектора перемещений с возрастанием толщины слоя инвара уменьшается быстрее, чем при замене слоя сплава слоем меди. Величина теплового потока (см. строку *Tstr* в табл. 2) с увеличением толщины слоя инвара уменьшается незначительно и ее изменение пренебрежимо мало.

На рис. 5 приведено распределение механических напряженностей между слоями чипа при толщине инвара 15 мкм. Рисунок свидетельствует о равномерном распределении напряжённостей по объему.

Рис. 5. Механические напряженности чипа с толщиной слоя инвара 15 мкм

Из проведенных расчетов можно сделать вывод о том, что слой инвара действительно уменьшает возникающие при нагревании механические напряжения между слоями гетероструктуры и металлической подложки. Наиболее оптимально будет использовать слой инвара толщиной от 5 до 10 мкм, т.к. при толщине слоя инвара в 5 мкм происходит изгиб чипа светодиода такой же, как и при замене этого слоя слоем меди, а при увеличении толщины слоя свыше 10 мкм возрастает его тепловое и электрическое сопротивление (теплопроводность инвара в 36,5 раза ниже, чем у меди, а удельное сопротивление больше в 39,4 раза), что нежелательно.

Работа выполнена при финансовой поддержке Министерства образования и науки РФ по договору 73/10 в рамках выполнения Постановления Правительства РФ № 218.

Литература

1. Шуберт Ф. Светодиоды / Пер. с англ.; под ред. А.Э. Юновича. – М.: Физматлит, 2008. – 496 с.

2. Конюхов А.В. Основы анализа конструкций в ANSYS: учеб. пособие. – Казань: КГУ, 2001. – 102 с.

3. Каплун А.Б. ANSYS в руках инженера: практ. руководство / А.Б. Каплун, Е.М. Морозова, М.А. Олфёрова. – М.: Едиториал УРСС, 2003. – 272 с.

4. Босов К.А. ANSYS: справочник пользователя. – М.: ДМК-Пресс, 2005. – 640 с.

5. Корицкий Ю.В. Справочник по электротехническим материалам / Ю.В. Корицкий, В.В. Пасынков, Б.М. Тареев. – Л.: Энергоатомиздат, 1988. – Т. 3. – 726 с.

Жидик Юрий Сергеевич

Студент, каф. физической электроники ТУСУРа Тел.: 8-923-414-1232 Эл. почта: Zhidikyur@mail.ru

Троян Павел Ефимович

Д-р техн. наук, профессор каф. физической электроники ТУСУРа Тел.: 8 (383-2) 41-39-36

Каримбаев Дамир Джамалитдинович

Нач. лаборатории СЭ ОАО «НИИПП» Тел.: 8-923-412-9679 Эл. почта: karimbdd@mail.ru

Zhidik Y.S., Troyan P.E., Karimbaev D.D. **The calculation heat-removing and substrate coat for the process of creation light-emitting diodes**

Estimate of influence thickness layer of invar, was inducted between copper substrate and heterostructure of high power light-emitting diode, on neutralization of mechanical stress in structure. **Keywords:** factor of linear temperature dilating, mechanical stress, thermal stream, vector of travels.