УДК 621.396.6

В.П. Алексеев, В.М. Карабан, С.В. Пономарев, С.Б. Сунцов

Численное моделирование напряженно-деформированных состояний модуля из низкотемпературной совместно-обжигаемой керамики вследствие тепловых режимов работы бортовой радиоэлектронной аппаратуры. Часть 2. Проведение численного моделирования

Разрабатываемая в ходе выполнения данной работы методика численного моделирования напряженно-деформированных состояний, возникающих в результате воздействия температурных нагрузок, предназначена для обеспечения достоверного прогноза долговечности материалов конструкции модуля из низкотемпературной совместно обжигаемой керамики на ранних этапах его создания.

Ключевые слова: численное моделирование, тепловые режимы, напряженно-деформированные состояния, модуль из низкотемпературной керамики, ANSYS workbench, бортовая радиоэлектронная аппаратура.

Условия, принятые при проведении расчетов:

- теплообмен верхней и боковых граней модуля из низкотемпературной совместнообжигаемой керамики (НТК) с внешней средой (вакуум) задан только за счет радиационного излучения;

- температура внешней среды изменяется по синусоидальному закону в пределах от минус 10 до плюс 40 °C, с периодом в 7200 с;

– температура плиты-основания (в расчете не участвует и на рис. 1 не отображена), контактирующая с нижней поверхностью модуля на основе НТК, также изменяется по синусоидальному закону от плюс 30 до плюс 40 °C;

- при механическом расчете нижняя грань модуля считается жестко закрепленной.

Перечень конструктивных элементов модуля из НТК (см. рис. 1), а также их материалы изготовления приведены в табл. 1.

Рис. 1. Геометрическая модель модуля из НТК, насчитывающая более 20 спеченных слоев керамика-металл

таолица т	Т	а б	ли	ца	1
-----------	---	-----	----	----	---

Таблица 2

Marophanis coorseression on second pyradin mogy				
Элемент конструкции	Материал			
Слой платы	Керамика DuPont Green Tape 951			
Внутренние проводящие слои	Серебряные пасты 6142D, 6148 и фоточувстви-			
	тельная паста 6453			
Наружные проводящие слои	Серебряно-платиновая паста QS 171			
Прецизионные проводники	Фотопасты 6778 и Q170Р			
Переходные отверстия	Серебряная паста 6141			
Внутренние (скрытые) резисторы	Пасты серии СF			
Наружные резисторы	Пасты серии QT-80			
Прецизионные проводники Переходные отверстия Внутренние (скрытые) резисторы Наружные резисторы	Фотопасты 6778 и Q170Р Серебряная паста 6141 Пасты серии СF Пасты серии QT-80			

Материалы соответствующих элементов конструкции модуля

Ориентировочные (приближенные) тепловые и механические характеристики применяемых материалов (керамики и металлизированных паст) приведены в табл. 2–4 (по данным зарубежной коммерческой электронной базы данных материалов www.matweb.com).

Керамика марки DuPont Green Tape 951				
Параметр	Значение			
Коэффициент теплопроводности, Вт/(м·К)	3			
Удельная теплоемкость, Дж/(кг·К)	989			
ТКЛР, ∘С-1	$5,8 \cdot 10^{-7}$			
Плотность, кг/см 3	3100			
Модуль Юнга, ГПа	152			
Коэффициент Пуассона	0,22			
Предел прочности, МПа	Растяжение – 185, изгиб – 320, сжатие – 1800			

Таблица З

Серебряные пасты 6141, 6142D	, 6148, 6453, 6778, CF
Параметр	Значение
Коэффициент теплопроводности, Вт/(м·К)	390
Удельная теплоемкость, Дж/(кг·К)	234
ТКЛР, ∘С-1	$1,69 \cdot 10^{-6}$
Плотность, кг/см ³	10500
Модуль Юнга, ГПа	76
Коэффициент Пуассона	0,38
Предел прочности, МПа	Растяжение – 140

Таблица 4

Серебряно-платиновые пасты Q170P, QS 171, QT-80				
Параметр	Значение			
Коэффициент теплопроводности,	995			
Вт/(м·К)	230			
Удельная теплоемкость, Дж/(кг·К)	184			
ТКЛР, ∘С−1	$2,87 \cdot 10^{-6}$			
Плотность, кг/см 3	16000			
Модуль Юнга, ГПа	209			
Коэффициент Пуассона	0,39			
Предел процности МПа	Растяжение – 185, изгиб – 320,			
предел прочности, мпа	сжатие – 1800			

Результаты проведенного теплового и механического моделирования конструкции модуля на основе НТК представлены на рис. 2-4.

Оценка адекватности и достоверности скорректированной тепловой модели осуществляется путем сравнения результатов численных расчетов со значениями температур, полученными в ходе экспериментального исследования.

Экспериментальные данные и соответствующие им расчетные значения занесены в табл. 5.

Рис. 2. Результат теплового моделирования модуля КП НТК

Рис. 3. Детальный вид деформации конструкции модуля КП НТК

Рис. 4. Детальный вид напряжения конструкции модуля КП НТК

Доклады ТУСУРа, № 2 (22), часть 1, декабрь 2010

Таблица 5

модуля КП НТК, рассчитанных и измеренных						
Элемент конст-	Рассчитанные	Измеренные значе-				
рукции	значения, °С	ния, °С				
Вытянуть 1-21	38,9	39,7				
Вытянуть 1-22	38,1	39,4				
Вытянуть 1-10	38,7	39,5				
Вытянуть 1–13	38,3	39,4				
Вытянуть 1-1	37,9	39,5				

Сводная таблица результатов температур

Из данных представленной табл. 5 видно, что рассогласование расчетных и экспериментальных результатов ведется в широких пределах (до 0,4 °C).

Данное обстоятельство можно отнести к неточностям вводимых исходных данных и параметров характеристик материалов, их изменением в процессе технологической обработки.

Заключение. Предложенный подход и реализованные математические модели позволяют на этапе проектирования проводить оценочные тепловые и механические расчеты подобных конструкций модулей КП НТК для бортовой РЭА и направлены на выявление проблемных мест для принятия дополнительных конструктивных решений.

Однако применение подобных моделей на практике сопряжено с проведением значительных исследований по уточнению имеющихся и выявлению недостающих значений функций и констант тепловых и механических характеристик применяемых материалов.

Работа выполнена в порядке реализации постановления № 218 Правительства РФ и договора № 2148 от 05.07.2010 г. ТГУ с ОАО «ИСС» имени академика М.Ф. Решетнева.

Алексеев Валерий Павлович

Канд. техн. наук, доцент каф. конструирования и производства радиоаппаратуры ТУСУРа Тел.: 8-913-812-23-81 Эл. почта: 106@vtomske.ru

Карабан Вадим Михайлович

Канд. физ.-мат. наук, ст. науч. сотрудник ТУСУРа Тел.: 8-913-872-45-21 Эл. почта: karaban_vm@mail.ru

Пономарев Сергей Васильевич

Канд. физ.-мат. наук, зав. лабораторией НИИ ПММ ТГУ Тел.: 8-903-952-81-97 Эл. почта: psv@niipmm.tsu.ru

Сунцов Сергей Борисович

Начальник отдела конструирования бортовой РЭА ОАО «Информационные спутниковые системы» им. академика М.Ф. Решетнева» (г. Железногорск) Тел.: 8-908-020-38-25 Эл. почта: sbsun@iss-reshetnev.ru

Alekseev V.P., Karaban V.M., Ponomarev S.V., Syncov S.B. Numerical simulation of stress-strain states of a low temperature jointly-burning ceramics module caused by thermal modes of onboard electronic equipment. Part 2. Numerical simulation

A technique for numerical simulation of stress-strain states, which result from the thermal loads impacts, is developed. The technique is intended for reliable forecast of durability of the low temperature jointly-burning ceramics module at early stages of its creation.

Keywords: numerical simulation, thermal modes, stress-strain state, low-temperature ceramics module, ANSYS workbench, onboard electronic equipment.