УДК 621.382: 004.94

А.В. Степачева, И.М. Добуш

Экстракция внешних параметров малосигнальной модели СВЧ полевого транзистора с применением комбинированной методики

Предложена новая методика экстракции внешних элементов эквивалентной схемы (ЭС) СВЧ полевого транзистора, основанная на комбинированном подходе. Достоинством методики является высокая точность определения элементов ЭС при использовании измеренных S-параметров в единственном холодном режиме ($V_{ds} = V_{gs} = 0$ В), наиболее простом в осуществлении и не приводящем к деградации параметров прибора.

Ключевые слова: экстракция, малосигнальная модель, СВЧ полевой транзистор, внешние параметры, комбинированная методика, компонентные уравнения.

В настоящее время существуют различные методы экстракции параметров малосигнальной модели СВЧ полевого транзистора в виде эквивалентной схемы (ЭС). От точности определения параметров такой модели зависит точность более сложных типов моделей, в том числе шумовых, температурных и нелинейных. На адекватность малосигнальной модели влияет точность определения паразитных параметров транзистора, которая напрямую определяется выбранным методом.

Многие известные методики определения значений внешних (паразитных) элементов малосигнальной ЭС основаны на использовании S-параметров, полученных при измерении транзистора в так называемых «холодных» режимах [1–5]. Холодным режимом называется состояние транзистора при напряжении сток-исток (V_{ds}), равном нулю. Для использования большинства методик экстракции [1–5] требуются измерения транзистора в нескольких типах холодных режимов, это усложняет процедуру измерений и может привести к деградации затвора транзистора, в частности, при положительных напряжениях затвор–исток (V_{gs} >0 В) [1]. Методы, использующие измерения только в одном режиме, обладают меньшей точностью и зачастую используются для нахождения только части параметров [4].

В настоящей работе предложена новая методика экстракции внешних параметров ЭС, которая использует измеренные параметры рассеяния транзистора в единственном холодном режиме $V_{ds} = V_{gs} = 0$ В, не приводящем к деградации затвора. Хорошая точность определения паразитных параметров прибора достигнута благодаря применению усовершенствованной комбинированной методики экстракции параметров ЭС [2].

Методики экстракции элементов ЭС СВЧ полевых транзисторов. Существует множество малосигнальных моделей СВЧ полевых транзисторов [1, 3–5]. Одна из наиболее распространенных

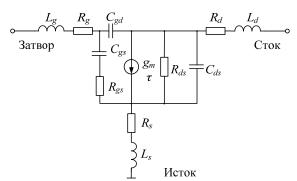


Рис. 1. Малосигнальная модель СВЧ полевого транзистора

ЭС MESFET- и HEMT-транзисторов представлена на рис. 1.

Малосигнальная модель полевого транзистора состоит из внутренней и внешней частей, представляющих сам транзистор и элементы его корпуса. Во внутреннюю часть входят: R_{gs} — сопротивление затвора; C_{gs} — емкость затвористок; C_{gd} — емкость затвор-сток; C_{ds} — емкость сток-исток; R_{ds} — сопротивление сток-исток; g_m — крутизна источника тока, управляемого напряжением; τ — постоянная времени частотной зависимости источника тока. Паразитные элементы внешней части представлены индуктивностями L_g , L_s , L_d и сопротивлениями R_g , R_s , R_d .

Большинство методов экстракции параметров малосигнальной модели СВЧ полевого транзистора предполагает этапы получения внешних и внутренних параметров транзистора. Определение

значений элементов ЭС-модели может осуществляться на основе прямой экстракции (аналитической методики), параметрической оптимизации или с использованием комбинированного подхода.

Аналитическая методика основана на составлении и решении системы компонентных уравнений (СКУ) относительно искомых параметров ЭС [2]. Так как ЭС СВЧ транзисторов являются достаточно сложными, для упрощения процедуры обычно используется последовательное определение элементов модели из уравнений, составленных в том числе для «холодных» режимов. Недостатком такой методики является сложность решения СКУ при большом числе неизвестных; вывод аналитических выражений сильно зависит от вида ЭС и должен осуществляться индивидуально для каждой задачи экстракции. Кроме того, существует возможность получения физически нереализуемых значений элементов из-за погрешностей измерений.

Значения элементов ЭС, полученные при помощи оптимизационных методов, не требуют дополнительных измерений в холодных режимах, но зависят от начального приближения и выбранного алгоритма оптимизации. В этом случае найденные величины элементов могут сильно отличаться от их реальных (физических) значений.

Суть комбинированного подхода [1, 2, 4] состоит в том, что на первом этапе значения элементов ЭС находятся при помощи методов прямой экстракции; на втором этапе производится уточнение значений элементов с помощью оптимизационных процедур для наилучшего совпадения смоделированных и измеренных характеристик компонента. Данный подход объединяет достоинства и недостатки обеих групп методов – с одной стороны, он является достаточно точным и надежным, но, с другой стороны, менее универсальным, более сложным и громоздким.

В [2] была предложена усовершенствованная комбинированная методика экстракции элементов ЭС для пассивных и активных СВЧ-компонентов, основанная на аналитическом выводе уравнений связи между элементами с использованием метода базисов Гребнера и последующем применении оптимизационного метода. Основные этапы данной методики следующие:

- 1) задание структуры ЭС СВЧ-компонента;
- 2) определение матрицы сопротивлений **Z** или матрицы проводимости **Y** для выбранной ЭС;
- 3) формирование СКУ (т.е. уравнений, составленных относительно параметров элементов цепи) путем приравнивания выражений для Z- или Y-параметров измеренным значениям на одной или нескольких частотах;
- 4) разделение полного вектора элементов ЭС на векторы зависимых и независимых переменных; зависимые элементы при вычислении базиса Гребнера будут рассматриваться как искомые переменные, а независимые как параметры;
- 5) приведение СКУ к каноническому виду с использованием метода базисов Гребнера и её решение в символьном виде; в результате получаются уравнения, определяющие связь между зависимыми и независимыми переменными;
- 6) определение независимых элементов путем решения задачи оптимизации, расчет зависимых элементов с помощью уравнений связи.

Характерными особенностями представленной методики по сравнению с известными комбинированными методами [1, 4] является разделение искомых переменных (значений элементов ЭС) на зависимые и независимые, а также применение для решения нелинейной СКУ метода базисов Гребнера. Это позволяет упростить вид уравнений элементов и облегчить решение системы в целом. Использование оптимизационного метода дает возможность находить более точные значения элементов ЭС путем минимизации погрешности модели во всем рассматриваемом диапазоне частот и обеспечить физически осуществимые (неотрицательные) значения элементов. Кроме того, данная методика достаточно формализована, может быть автоматизирована [2] и является универсальной, т.е. применима к ЭС любой структуры.

Рассматриваемая методика была впервые предложена и описана в [2] применительно к определению параметров ЭС пассивных компонентов СВЧ монолитных интегральных схем. ЭС СВЧ полевого транзистора в холодном режиме представляет собой пассивный четырехполюсник, состоящий из сосредоточенных R-, L-, C-элементов. Таким образом, выбрав ЭС транзистора, соответствующую холодному режиму работы, с применением комбинированного подхода теоретически можно получить все внешние параметры малосигнальной модели.

Комбинированная методика экстракции внешних параметров ЭС СВЧ-транзистора. Предварительно нами было рассмотрено несколько ЭС, соответствующих холодному режиму работы HEMT-транзистора [4]. Для экстракции внешних параметров малосигнальной модели транзистора с

использованием комбинированной методики выбрана ЭС при $V_{ds} = V_{gs} = 0$ В, изображенная на рис. 2, в ней $R_{ch/2}$ — сопротивление канала. Такой выбор обусловлен следующими причинами. Вопервых, представленная ЭС включает все основные паразитные параметры малосигнальной модели.

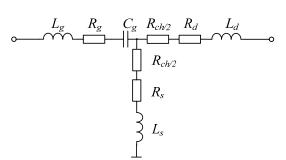


Рис. 2. ЭС полевого транзистора для холодного режима $V_{ds} = V_{gs} = 0$ В

Во-вторых, эти параметры могут быть определены из измерений в единственном холодном режиме, наиболее простом для осуществления и не приводящем к деградации затвора транзистора. В-третьих, для указанной модели достаточно просто выполняется составление и решение СКУ.

ЭС на рис. 2 имеет T-образную структуру. Поэтому значения элементов проще всего получить непосредственно из действительных и мнимых частей Z-параметров транзистора, измеренных на заданной фиксированной частоте в холодном режиме. В этом случае СКУ имеет следующий вид:

$$ReZ_{11} = R_{s} + R_{ch/2} + R_{g};$$

$$ImZ_{11} = \omega L_{s} - \frac{1}{\omega C_{g}} + \omega L_{g};$$

$$ReZ_{12} = R_{s} + R_{ch/2};$$

$$ImZ_{12} = \omega L_{s};$$

$$ReZ_{22} = R_{s} + 2R_{ch/2} + R_{d};$$

$$ImZ_{22} = \omega L_{s} + \omega L_{d}.$$
(1)

Рассматриваемая ЭС состоит из девяти элементов, искомыми являются восемь параметров R_s , R_d , R_g , L_s , L_d , L_g , C_g и $R_{ch/2}$. Максимальное число вещественных компонентных уравнений (m) равно 6, так как рассматриваемая ЭС является взаимным четырехполюсником и справедливо равенство $Z_{12}=Z_{21}$, в то время как число неизвестных параметров (*n*) равно 8.

Таким образом, имеет место соотношение m < n, т.е. система уравнений (1) недоопределена. Это означает, что решить ее с помощью строгой аналитической методики экстракции [2] нельзя – необходимо добавить еще два дополнительных уравнения, например, используя результаты измерений на другой частоте, но это усложняет решение.

В то же время с помощью комбинированной методики задача может быть решена без использования дополнительных уравнений. С этой целью разделим полный вектор переменных $\mathbf{e} = (R_s, R_d,$ $R_{\rm g},\,L_{\rm s},\,L_{\rm d},\,L_{\rm g},\,C_{\rm g},\,R_{ch/2})$ на векторы зависимых и независимых переменных. В качестве зависимых выберем 6 переменных R_s , R_d , R_g , L_s , L_d , L_g (по числу уравнений СКУ), а в качестве независимых – оставшиеся переменные $C_{\rm g}$, $R_{ch/2}$. Независимые переменные будут варьироваться при решении задачи оптимизации, а зависимые – находиться из уравнений связи. Стоит отметить, что параметры $C_{\rm g}$, $R_{ch/2}$ используются только для расчета ЭС в холодном режиме (см. рис. 2) и не используются в малосигнальной модели транзистора (см. рис. 1).

Благодаря простоте уравнений (1) получить соотношения, связывающие значения элементов ЭС, можно без использования базиса Гребнера:

$$R_s = -R_{ch/2} + \text{Re}Z_{12};$$
 (2)

$$R_d = -R_{ch/2} - \text{Re}Z_{12} + \text{Re}Z_{22}; \tag{3}$$

$$R_g = -\text{Re}Z_{12} + \text{Re}Z_{11}; \tag{4}$$

$$L_{S} = \frac{\operatorname{Im} Z_{12}}{\omega};\tag{5}$$

$$L_d = -\frac{-\text{Im}Z_{22} + \text{Im}Z_{12}}{\omega};\tag{6}$$

$$L_{d} = -\frac{-\text{Im}Z_{22} + \text{Im}Z_{12}}{\omega};$$

$$L_{g} = \frac{1 + \text{Im}Z_{11}\omega C_{g} - \omega C_{g} \text{Im}Z_{12}}{\omega^{2}C_{g}}.$$
(6)

Выражения ()–(6) дают возможность найти значения элементов ЭС L_s , L_d , R_g непосредственно по измеренным Z-параметрам транзистора. Выражения (2), (3), (7) связывают зависимые параметры R_s , R_d , L_g с независимыми параметрами $C_{\rm g}$, $R_{ch/2}$. Для использования (2)—(7) должна быть указана частота ω , на которой задаются измеренные значения Z-параметров (реально последние находятся из измеренных S-параметров на этой частоте).

Далее решается оптимизационная задача, в которой независимые параметры $C_{\rm g},\,R_{\it ch/2}$ варьируются с целью достижения наилучшего совпадения измеренных S-параметров транзистора в холодном режиме и его ЭС-модели во всем заданном диапазоне частот [при этом соответствующие значения зависимых параметров ЭС непрерывно вычисляются в итерационном цикле с помощью (2)–(7)]. Здесь используется соответствующая целевая функция (ЦФ), оценивающая расхождение параметров рассеяния транзистора и модели. Для получения физически реализуемых решений в задаче оптимизации также накладываются условия неотрицательности зависимых и независимых переменных. После нахождения оптимальных значений элементов $C_{\rm g},\,R_{\it ch/2}$ остальные элементы ЭС находятся по формулам (2)–(7).

Пример построения малосигнальной модели СВЧ полевого транзистора. Опишем процесс экстракции малосигнальной модели транзистора с шириной затвора 4×40 мкм, изготовленного по 0,3 мкм GaN HEMT-технологии ОАО «Октава» (г. Новосибирск) — рис. 3, a. В качестве исходных данных используются S-параметры транзистора, измеренные в диапазоне частот 0,1–40 ГГц в холодном режиме $V_{ds}=V_{gs}=0$ В и в рабочей точке $V_{ds}=15$ В, $V_{gs}=-3,35$ В.

Внешние элементы малосигнальной модели транзистора были найдены на основе рассмотренной комбинированной методики при применении ЭС транзистора в холодном режиме $V_{ds} = V_{gs} = 0$ В (см. рис. 2). При экстракции паразитных элементов значения Z-параметров транзистора в уравнениях (2)—(7) были рассчитаны из параметров рассеяния, измеренных на частоте 20 ГГц. Поиск оптимальных значений независимых элементов осуществлялся в системе AWR Microwave Office с помощью метода оптимизации Simplex с заданным числом итераций (500) при использовании среднеквадратичной ЦФ.

Найденные в результате экстракции величины внешних элементов ЭС транзистора представлены на рис. 3, δ и в табл. 1.

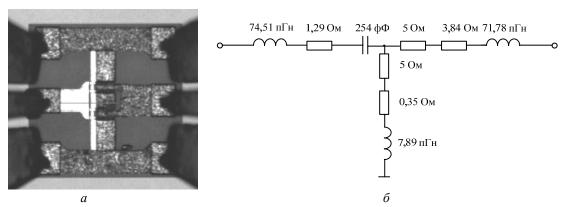


Рис. 3. GaN HEMT-транзистор: фотография (a) и ЭС для холодного режима $V_{ds} = V_{gs} = 0$ В (б)

Таблица 1

	Значения элементов модели GaN HEMT транзистора для холодного режима работы									
Ī	L_g , п Γ н	R_g , Om	$C_g, \Phi\Phi$	L_d , п Γ н	R_d , OM	$R_{ch/2}$, Om	L_s , п Γ н	R_s , Om		
	74, 51	1,29	254	71,78	3,84	5,0	7,89	0,35		

На рис. 4 представлено сравнение в диапазоне 0,1—40 ГГц частотных зависимостей параметров рассеяния GaN HEMT-транзистора в холодном режиме, полученных при измерениях, с рассчитанными по найденной ЭС.

Видно, что в диапазоне частот до 40 ГГц отличие измеренных и рассчитанных по модели параметров рассеяния транзистора в холодном режиме достаточно мало. В частности, максимальная ошибка параметров рассеяния не превышает 9% по модулю и 6° по фазе (на частоте 40 ГГц). Приведенные результаты свидетельствуют о том, что точность нахождения внешних (паразитных) параметров ЭС с помощью комбинированной методики достаточно высокая.

На следующем этапе построения малосигнальной модели СВЧ-транзистора выполняется экстракция внутренних элементов ЭС. С этой целью использовался метод, описанный в [2], *У*-пара-

метры внутренней части транзистора были получены путем выделения найденных внешних элементов из измеренных *S*-параметров прибора в заданной рабочей точке.

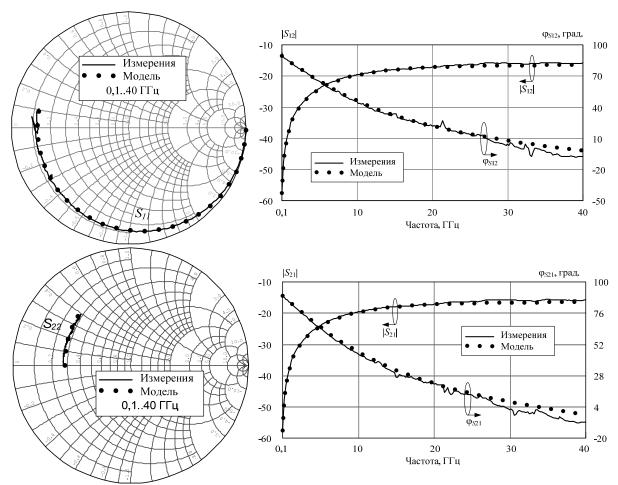


Рис. 4. Частотные зависимости параметров рассеяния GaN HEMT-транзистора в холодном режиме $V_{ds} = V_{gs} = 0$ В и его ЭС-модели

Таблица 2

Погрешности модели GaN HEMT-транзистора в холодном режиме

Частота, ГГц	Абсолютная ошибка S-параметров по модулю и фазе (град)							
частога, г г ц	$ S_{11} $	$\varphi\left(S_{11}\right)$	$ S_{12} $	$\varphi(S_{12})$	$ S_{21} $	$\varphi\left(S_{21}\right)$	$ S_{22} $	$\varphi\left(S_{22}\right)$
1	0,002896	0,01569	0,00046	0,3595	0,00046	0,39784	0,01424	0,00321
10	0,00414	0,15453	0,001282	0,38143	0,0018086	1,5674	0,009196	0,96878
20	8,3e-005	0,00554	9,1e-006	0,001199	0,0008126	0,39648	0,000106	0,00051
30	0,01236	0,38155	0,011722	3,7194	0,013904	6,1874	0,016695	1,6512
40	0,001932	0,91423	0,01293	5,6888	0,015071	6,0604	0,014353	0,02039

Рассчитанные в рабочей точке $V_{ds} = 15 \text{ B}$, $V_{gs} = -3,35 \text{ B}$ значения внутренних параметров малосигнальной модели транзистора приведены в табл. 3.

Таблица 3

 Внутренние параметры малосигнальной модели GaN HEMT-транзистора

 R_{gs} , Ом
 C_{gd} , $\Pi\Phi$ C_{gs} , $\Pi\Phi$ g_m , мСм
 τ , Πc R_{ds} , Oм
 C_{ds} , $\Pi\Phi$

 8,7
 0,021
 0,15
 31
 1,09
 826,2
 0,041

Для анализа точности экстракции сравним параметры рассеяния полученной модели GaN HEMT-транзистора с результатами измерений в рабочем режиме $V_{ds} = 15 \text{ B}, \ V_{gs} = -3,35 \text{ B}$ (рис. 5).

По представленным графикам можно сделать вывод, что полученная на основе предложенной комбинированной методики малосигнальная модель транзистора обладает высокой точностью. Наблюдается хорошее совпадение измеренных и рассчитанных с помощью модели параметров рассея-

ния транзистора, о чем также свидетельствуют значения максимальных погрешностей *S*-параметров по модулю и фазе (табл. 4).

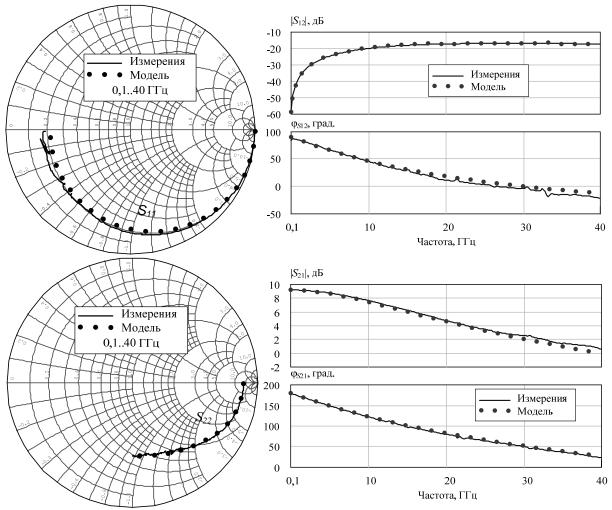


Рис. 5. Частотные зависимости параметров рассеяния GaN HEMT транзистора в режиме $V_{ds} = 15$ B, $V_{gs} = -3,35$ B и его малосигнальной модели

Таблица 4

Максимальные погрешности малосигнальной модели GaN HEMT-транзистора

Параметры	Максимали	Максимальная относительная ошибка, %				Максимальная абсолютная ошибка, град			
	$ S_{11} $	$ S_{12} $	$ S_{21} $	$ S_{22} $	$\varphi(S_{11})$	$\varphi(S_{12})$	$\varphi(S_{21})$	$\varphi(S_{22})$	
Значение	10,17	8,5	8,46	3,75	6,264	0,257	0,136	0,097	
Частота, ГГц	22,22	0,1	38,6	24,04	39,8	33,22	21,45	22,05	

Таким образом, максимальная погрешность полученной модели относительно измеренных параметров рассеяния не превышает 10% по модулю и 6° по фазе.

Заключение. В работе предложена новая методика экстракции внешних элементов ЭС полевого транзистора, использующая результаты измерений в единственном холодном режиме. Для экстракции применен разработанный ранее комбинированный подход, сочетающий одновременно решение СКУ и оптимизацию. Это позволило на основе выбранной ЭС и измеренных параметров рассеяния транзистора в холодном режиме $V_{\rm ds} = V_{\rm gs} = 0$ В получить все внешние элементы малосигнальной модели. Измерения в данном режиме являются наиболее простыми и не приводят к деградации затвора. Полученная малосигнальная модель СВЧ полевого транзистора является достаточно точной, о чем свидетельствуют рассчитанные частотные зависимости параметров рассеяния и таблицы погрешностей.

Работа выполнялась в рамках ФЦП «Научные и научно-педагогические кадры инновационной России» на 2009–2013 годы по направлениям «Создание электронной компонентной базы»

(14.740.11.1261, 14.В37.21.0345), «Микроэлектроника» (П669, 16.740.11.0092, 14.740.11.1136, 14.В37.21.0462) и «Проведение исследований коллективами НОЦ по направлению «Микроэлектроника» (14.740.11.0135).

Литература

- 1. Man-Young J. A Technique for Extracting Small-Signal Equivalent-Circuit Elements of HEMTs / J. Man-Young et al. // IEICE Trans. Electron. 1999. Vol. E82-C, № 11. P. 1968–1976.
- 2. Добуш И.М. Программа экстракции эквивалентных схем пассивных СВЧ-компонентов в среде символьных вычислений / И.М. Добуш, М.В. Черкашин, Л.И. Бабак // Электронные средства и системы управления: матер. докл. междунар. науч.-практ. конф. Томск: В-Спектр, 2011. С. 161–168.
- 3. Berroth M. Broad-Band Determination of the FET Small-Signal Equivalent Circuit / M. Berroth, R. Bosch // IEEE Trans. on Microwave Theory and Tech. 1990. Vol. 38, № 7. P. 891–895.
- 4. Rudolph M. Nonlinear Transistor Model Parameter Extraction Techniques / M. Rudolph, C. Fager, D.E. Root. Cambridge: University Press, 2012. 352 p.
- 5. Dambrine G.A New Method for Determining the FET Small-Signal Equivalent Circuit / G. Dambrine, A. Cappy, F. Heliodore, E. Playez // IEEE Trans. on Microwave Theory and Tech. 1988. Vol. 36, № 7. P. 1151–1159.

Степачева Алеся Викторовна

Аспирант каф. компьютерных систем в управлении и проектировании (КСУП) ТУСУРа

Тел.: +7 (382-2) 41-47-17

Эл. почта: amaya_89@sibmail.com

Добуш Игорь Мирославович

Мл. науч. сотруднк каф. КСУП

Тел.: +7 (382-2) 41-47-17

Эл. почта: igadobush@gmail.com

Stepacheva A.V., Dobush I.M.

Extraction of external parameters of microwave FET small-signal model by hybrid technique

A new hybrid technique for extracting external elements of microwave FET small-signal equivalent circuit (EC) is proposed. The advantage of the technique is a high accuracy of EC element calculation based on measured S-parameters in a single cold mode $V_{ds} = V_{gs} = 0$ V, the latter is the simplest for implementation and does not lead to degradation of device parameters.

Keywords: extraction, small-signal model, FET, parasitic parameters, hybrid technique, component equations.