УДК 621.3.072

И.М. Добуш

Обзор способов построения и схем СВЧ монолитных ограничителей мощности

Представлен краткий обзор способов построения, схем и характеристик СВЧ-ограничителей мощности в диапазоне частот до 25 ГГц, реализуемых в монолитном исполнении.

Ключевые слова: СВЧ, ограничитель, защитное устройство, монолитная интегральная схема, ограничительная характеристика.

Введение. Во входных каскадах приемных устройств современных радиолокационных станций СВЧ-диапазона часто применяются малошумящие транзисторы, которые весьма чувствительны к воздействию мощного СВЧ-сигнала. В частности, для реализации минимального коэффициента шума полевые транзисторы с барьером Шотки должны обладать коротким затвором и низкими пробивными напряжениями [1]. Такие транзисторы наиболее подвержены электрическому пробою, поэтому для защиты СВЧ приемных устройств применяют ограничители.

Ограничители, или защитные устройства (ЗУ), предназначены для снижения до безопасного уровня СВЧ-мощности, поступившей на вход приемников, в качестве входных устройств которых используются транзисторные усилители (допустимая средняя мощность около 25 мВт) либо смесители на диодах (допустимая средняя мощность около 300 мВт) [2].

В настоящей работе выполнен краткий обзор способов построения и схем СВЧ-ограничителей мощности в диапазоне частот до 25 ГГц, в том числе изготавливаемых на основе GaAs монолитной технологии. Целью обзора являлся выбор вариантов построения ЗУ при разработке СВЧ-приемников Х-диапазона в монолитном исполнении.

Классификация ограничителей. Для реализации ЗУ применяются различные по способам построения и области применения защитные устройства [1, 3]:

- газоразрядные устройства для уровней входной мощности более 10 кВт;
- ферритовые ограничители для уровней входной мощности более 100 Вт;

• диодные ограничители для уровней от единиц милливатт до сотен ватт как с внешним управлением, так и самоуправляемые (на основе варакторов, *pin*-диодов, диодов Шоттки и др.).

По конструктивному признаку ЗУ могут быть реализованы в волноводном, коаксиальном и полосковом исполнении в зависимости от области применения, частотного диапазона и допустимой входной мощности.

Для реализации ЗУ в монолитных интегральных схемах (МИС) и обеспечения высокого быстродействия значительный интерес представляет использование быстродействующих управляющих приборов, таких как *pin*-диоды и диоды Шотки [1]. Диоды Шотки обладают меньшим пробивным напряжением и меньшей стойкостью к перегреву по сравнению с *pin*-диодами [4]. Однако они могут быть технологически совместимы с малошумящими транзисторами и просто интегрированы в МИС малошумящих усилителей (МШУ) [5], в отличие от *pin*-диодов.

Способы построения, схемы и характеристики СВЧ монолитных ограничителей мощности. Судя по литературным данным [1–8 и др.], наиболее часто используемая схема полупроводникового СВЧ-ограничителя – это схема ЗУ на основе встречно-параллельных диодов. В ней обычно используются *pin*-диоды либо диоды Шотки.

Простейшая такая схема изображена на рис. 1, *a*. Она имеет два состояния: состояние пропускания при малой мощности входного сигнала и состояние запирания – при большой мощности. Переход из одного состояния в другое основывается на нелинейных свойствах полупроводниковых диодов и осуществляется с помощью управляющего напряжения, образуемого за счет пришедшей СВЧ-мощности. Встречные диоды ограничивают как положительные, так и отрицательные полуволны сигнала на некотором уровне напряжения (рис. 1, δ).

Приведем два примера реализации ограничителей отечественных и зарубежных разработчиков.

На рис. 2 представлены принципиальная схема и топология двухкаскадного ограничителя на встречно-параллельных диодах Шотки Х-диапазона, разработчик – ФГУП НПП «Исток» [8]. Каждый из каскадов представляет собой последовательно-параллельную цепочку из двух диодов, каскады разделены отрезком микрополосковой линии. Два каскада в ЗУ используются для обеспечения необходимой рассеиваемой мощности в режиме ограничения.

Рис. 2. Двухкаскадный ограничитель на встречно-параллельных диодах Шотки Х-диапазона: принципиальная схема (*a*) и топология (*б*)

Стоит отметить, что данная схема обладает особенностью: при подаче смещения на одну из пар диодов микросхемы происходит ослабление входного сигнала в зависимости от тока смещения.

На рис. З показаны ограничительная характеристика, а также частотные зависимости вносимых потерь при различных токах смещения ЗУ в диапазоне до 12 ГГц.

Вносимые потери в режиме пропускания (при нулевом токе смещения) в основном вызваны потерями полезной мощности сигнала в подводящих и согласующих отрезках микрополосковой линии. На верхних частотах диапазона увеличение потерь вызвано влиянием емкости закрытого диода.

На рис. 4 приведены принципиальная схема и топология двухкаскадного ограничителя на встречно-параллельных vpin-диодах (vertical pin-diode – pin-диод с балочными выводами) в частотном диапазоне 3-25 ГГц, изготовитель – фирма Triquint, США [9]. Принцип работы ЗУ аналогичен предыдущей схеме.

Рис. 3. Ограничительная характеристика (*a*) и частотные зависимости вносимых потерь при различных токах смещения (*б*) ЗУ

На рис. 5 изображены ограничительная характеристика на частоте 10 ГГц, а также частотные зависимости вносимых и обратных потерь ЗУ.

Доклады ТУСУРа, № 2 (22), часть 1, декабрь 2010

Рис. 5. (продолжение). Ограничительная характеристика (*a*) и частотные зависимости вносимых и обратных потерь (*б*) ЗУ

В таблице сведены характеристики ограничителей отечественных и зарубежных разработчиков на *pin*-диодах и диодах Шотки. Как видно, ЗУ на указанных двух типах диодов имеют сходные характеристики по потерям. Однако ограничители на *pin*-диодах допускают больший уровень входной мощности.

Таблица 1

ларактеристики ограничителей отечественных и зарубежных разработчиков						
Фирма/	Диапазон	Потери,	Просачивающаяся	Обратные	Макс. вх.	Тип
модель	частот, ГГц	дБ	мощность, дБм	потери, дБ	мощность, Вт	диода
Filtronic	2-20	0,5	15	-15	4-6	Мотта
LML221		(1 макс.)				
Triquint	2_25	0,5	18	_15	5	VDIN
TGL2201	3-23	(1 макс.)	10	10	0	VIIIN
НИИПП	2-20	1	16,5	-15	5	VPIN
НИИПП	0-3	0,35	16	-	0,5	Шоттки
Исток	0-12	1	10	_	2,5	Шоттки
Agilent	0-65	0,7	10	15	_	_
TC231		(2 макс.)				

Заключение. Из проведенного обзора следует, что монолитные ограничители мощности в частотном диапазоне до 25 ГГц чаще всего выполняются на основе схемы на встречно-параллельных диодах, которая сочетает в себе малые потери и высокое быстродействие. В качестве управляющих элементов в ней могут использоваться pin-диоды и диоды Шотки. Первые имеют преимущество по уровню входной мощности, однако плохо совместимы с технологией изготовления МИС МШУ. Поэтому для реализации ограничителей мощности Х-диапазона на основе монолитной технологии, используемых в СВЧприемниках, наиболее подходит схема на встречно-параллельных диодах Шотки, допускающая простую интеграцию в МИС МШУ.

Работа выполнялась при поддержке РФФИ в рамках проектов 08-07-99034-р_офи и 09-07-99020-р_офи, а также в рамках ФЦП «Научные и научно-педагогические кадры инновационной России» на 2009-2013 годы по направлениям «Нанотехнологии и наноматериалы», «Создание электронной компонентной базы», «Микроэлектроника» (мероприятия 1.1, 1.2.1, 1.2.2, 1.3.1 и 1.3.2, государственные контракты П1418, П1492, П2188, П669, П499, 16.740.11.0092 и 14.740.11.0135).

Литература

1. Крутов А.В. Монолитная интегральная схема защитного устройства 3-см диапазона / А.В. Крутов, А.С. Ребров // Сб. трудов 15-й Междунар. Крымской конф. «СВЧ-техника и телекоммуникационные технологии». – Севастополь: Вебер, 2005. – С. 177–178.

2. Микроэлектронные устройства СВЧ / Н.Т. Бова, Ю.Г. Ефремов, В.В. Конин и др. – Киев: Техника, 1984. – 184 с. 3. 10 W CW Broadband Balanced Limiter [Электронный ресурс]. – Режим доступа:

3. 10 W CW Broadband Balanced Limiter [Электронный ресурс]. – Режим доступа: http://onlinelibrary.wiley.com/doi/10.1002/mmce.10069/abstract, (дата обращения: 03.09.2010).

4. Осипов А.М. Защитное устройство на основе диодов Шотки С- и Х-диапазонов // Сбор. трудов 17-й Междунар. Крымской конф. «СВЧ-техника и телекоммуникационные технологии». – Севастополь: Вебер, 2007. – Т. 1. – С. 97–98.

5. Монолитная интегральная схема защитного устройства L- и S-диапазонов на основе диодов Шотки / В.С. Арыков, А.Н. Гусев, О.А. Дедкова, А.Ю. Ющенко // Сб. трудов 20-й Межд. Крымской конф. «СВЧ-техника и телекоммуникационные технологии». – Севастополь: Вебер. – 2010. – Т. 1. – С. 147–148.

6. Encyclopedia of RF and Microwave Engineering /ed. Chang Kai. – NJ, Hoboken: John Wiley & Sons, 2005. – 5832 p.

7. Диодные ограничители. [Электронный ресурс]. – Режим доступа:

http://radiomaster.ru/articles/view/341/, свободный (дата обращения: 03.09.2010).

8. Крутов А.В. Монолитная интегральная схема защитного устройства. Новые функциональные возможности // Сб. трудов 17-й Междунар. Крымской конф. «СВЧ-техника и телекоммуникационные технологии». – Севастополь: Вебер, 2007. – Т. 1. – С. 79–80.

9. Wideband Dual Stage VPIN Limiter TGL2201 [Электронный ресурс]. – Режим доступа: http://www.triquint.com/prodserv/more_info/proddisp.

aspx? prod id=TGL2201, свободный (дата обращения: 03.09.2010).

Добуш Игорь Мирославович

Аспирант каф. компьютерных систем в управлении и проектировании (КСУП) ТУСУРа Тел.: +7-923-402-92-86 Эл. почта: igadobush@gmail.com

Dobush I.M.

Review of designing principles and circuitry of MMIC limiters

An overview of designing principles, circuitry and performances of MMIC limiters is given for frequencies up to 25 GHz.

Keywords: Microwaves, limiter, protection device, monolithic integrated circuit, limiting performance.