УДК 621.372:621.375

Г.Н. Якушевич

Математическая модель активного четырехполюсника для широкополосного усилителя с двухполюсниками комбинированной обратной связи

Получена математическая модель активного четырехполюсника для широкополосного усилителя с двухполюсниками комбинированной обратной связи на основе заданных коэффициентов передачи, отражения и структуры двухполюсников комбинированной обратной связи (OC). Получена обобщенная структурная схема активного четырехполюсника, представленного активным элементом, на входе и выходе которого включены фазирующе-трансформирующие цепи (ФТЦ) и симметрирующие цепи (СЦ).

Ключевые слова: математическая модель, активный четырехполюсник, широкополосный усилитель, двухполюсник, комбинированная ОС.

В настоящее время современные технологии позволяют на этапах проектирования и разработки получить требуемые параметры активных элементов (транзисторов). Поэтому актуальной задачей является определение требуемых параметров активных элементов для широкополосных усилителей с двухполюсниками ОС.

В работе [1] была получена математическая модель активного четырехполюсника для широкополосного СВЧ-усилителя с двухполюсником параллельной обратной связи и показано, что прежде, чем ввести параллельную ОС, необходимо приблизить параметры активного элемента к требуемым параметрам активного четырехполюсника без параллельной ОС.

Постановка задачи. Определение в виде аналитических выражений математической модели активного четырехполюсника для широкополосного усилителя с двухполюсниками комбинированной ОС, на основе которых по заданным коэффициентам передачи, отражения и структуре двухполюсников комбинированной ОС рассчитываются требуемые параметры активного элемента без двухполюсников комбинированной ОС.

Математическая модель. Определение математической модели активного четырехполюсника для широкополосного усилителя с двухполюсниками комбинированной ОС (рис. 1) проведем в матричном виде. Для этого примем следующие обозначения:

$$\begin{bmatrix} S_{\text{OC}} \end{bmatrix} = \begin{bmatrix} S_{11\text{ OC}} & S_{12\text{ OC}} \\ S_{21\text{ OC}} & S_{22\text{ OC}} \end{bmatrix}; \begin{bmatrix} S_{\text{A}\text{Y}} \end{bmatrix} = \begin{bmatrix} S_{11}\text{ A}\text{Y} & S_{12}\text{ A}\text{Y} \\ S_{21}\text{ A}\text{Y} & S_{22}\text{ A}\text{Y} \end{bmatrix};$$
$$\begin{bmatrix} Y_{\text{DC}} \end{bmatrix} = \begin{bmatrix} Y_{\text{OC}} & -Y_{\text{OC}} \\ -Y_{\text{OC}} & Y_{\text{OC}} \end{bmatrix}; \begin{bmatrix} Z_{\text{DOC}} \end{bmatrix} = \begin{bmatrix} Z_{\text{OC}} & Z_{\text{OC}} \\ Z_{\text{OC}} & Z_{\text{OC}} \end{bmatrix}; \begin{bmatrix} E \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix},$$

где $[S_{OC}]$, $[S_{AY}]$, $[Y_{\text{ДOC}}]$, $[Z_{\text{ДOC}}]$, [E] – матрицы параметров рассеяния широкополосного усилителя с комбинированной ОС и активного четырехполюсника, матрица проводимости двухполюсника параллельной ОС, матрица сопротивлений последовательной ОС и единичная матрица.

Рис. 1. Активный четырехполюсник с двухполюсниками комбинированной ОС

Считая матрицу $[S_{OC}]$ заданной, перейдем на основе соотношений перехода от *S*-параметров к *Y*-параметрам – от матрицы $[S_{OC}]$ к матрице проводимости широкополосного каскада с комбинированной ОС и вычтем из полученной матрицы проводимости матрицу проводимости двухполюсника параллельной ОС $[Y_{OC}]$, затем на основе соотношений перехода от *Y*-параметров к *Z*-параметрам, перейдем к матрице сопротивлений, из которой вычтем матрицу сопротивлений двухполюсника последовательной ОС $[Z_{OC}]$ и на основе соотношений перехода от *Z*-параметров к *S*-параметрам запишем в матричном виде алгоритм определения матрицы рассеяния активного четырехполюсника для широкополосного усилителя с комбинированной OC:

$$[S_{AY}] = -(2((2([S_{OC}] + [E]))^{-1} - [E] - [Y_{OC}])^{-1} - [Z_{OC}] + [E])^{-1} - [E]).$$
(1)

Из выражения (1), с учетом введенных выше обозначений, получим аналитические выражения для требуемых параметров активного четырехполюсника для широкополосного усилителя с комбинированной ОС:

$$S_{11 \text{ A}\text{Y}} = \frac{2 S_{11 \text{ OC}} + (Y_{\text{OC}} - Z_{\text{OC}}) S_{\text{A}}}{2 + (Y_{\text{OC}} + Z_{\text{OC}}) S_{\text{B}} - (Y_{\text{OC}} - Z_{\text{OC}}) S_{\text{C}} + 2Y_{\text{OC}} Z_{\text{OC}} S_{\text{A}}};$$
(2)

$$S_{12 AY} = \frac{2 S_{12 OC} + (Y_{OC} + Z_{OC}) S_D - (Y_{OC} - Z_{OC}) S_C + 2Y_{OC} Z_{OC} S_A}{2 Y_{OC} Z_{OC} S_A} ;$$
(3)

$$2 + (Y_{OC} + Z_{OC}) S_{B} - (Y_{OC} - Z_{OC}) S_{C} + 2 Y_{OC} Z_{OC} S_{A}$$

$$2 S_{21OC} + (Y_{OC} + Z_{OC}) S_{D} - (Y_{OC} - Z_{OC}) S_{C} + 2 Y_{OC} Z_{OC} S_{A}$$

$$S_{21 AY} = \frac{1}{2 + (Y_{OC} + Z_{OC}) S_{B} - (Y_{OC} - Z_{OC}) S_{C} + 2 Y_{OC} Z_{OC} S_{A}}; \quad (4)$$

$$S_{22 AY} = \frac{2 S_{22 OC} + (Y_{OC} - Z_{OC}) S_A}{2 + (Y_{OC} + Z_{OC}) S_B - (Y_{OC} - Z_{OC}) S_C + 2 Y_{OC} Z_{OC} S_A};$$
(5)

где $S_{\rm A} = (S_{12\,\rm OC} - 1) (S_{21\,\rm OC} - 1) - S_{11\rm OC} S_{22\,\rm OC}, S_{\rm B} = S_{21\rm OC} + S_{12\,\rm OC} - 2;$

$$S_{\rm C} = S_{110\rm C} + S_{220\rm C}$$
, $S_{\rm D} = S_{120\rm C} S_{210\rm C} - S_{110\rm C} S_{220\rm C} - 1$.

Полученные соотношения (2)–(5) позволяют рассчитывать требуемые S-параметры активного четырехполюсника для широкополосного усилителя на основе заданных коэффициентов прямой S_{210C} и обратной S_{120C} передачи, коэффициентов отражения по входу и выходу S_{110C} и S_{220C} , заданной структуры двухполюсников Y_{0C} и Z_{0C} параллельной и последовательной ОС.

Коэффициент обратной передачи S_{12OC} удобнее не задавать, а рассчитать из полученного соотношения (3) с учетом S_{12} на основе заданных значений S_{21OC} , S_{11OC} , S_{22OC} , Y_{OC} и Z_{OC} по следующему выражению:

$$S_{12OC} = \frac{(Y_{OC} + Z_{OC})(1 + S_{11OC}S_{22OC}) + (Y_{OC} - Z_{OC})S_C + 2Y_{OC}Z_{OC}(S_{21OC} + S_{11OC}S_{22OC} - 1) - S_{12A4}S_E}{2 + (Y_{OC} + Z_{OC})S_{21OC} + 2Y_{OC}Z_{OC}(S_{21OC} - 1) - S_{12A4}S_F},$$
(6)

где $S_{\rm E} = (Y_{\rm OC} + Z_{\rm OC})(2 - S_{21\,\rm OC}) + (Y_{\rm OC} - Z_{\rm OC})S_{\rm C} + 2Y_{\rm OC}Z_{\rm OC}(S_{21\,\rm OC} + S_{11\,\rm OC}S_{22\,\rm OC} - 1) - 2,$ $S_{\rm F} = Y_{\rm OC} + Z_{\rm OC} + 2Y_{\rm OC}Z_{\rm OC}(S_{21\,\rm OC} - 1).$

Тогда с учетом выражения (6) соотношения (2), (4) и (5) запишутся

$$S_{11 \text{ A}\text{Y}} = \frac{2S_{11 \text{ OC}} + [Y_{\text{OC}}(S_{11 \text{ OC}} + 1 - S_{21 \text{ OC}}) + Z_{\text{OC}}(S_{11 \text{ OC}} - 1 + S_{21 \text{ OC}})](1 - S_{12 \text{ A}\text{Y}})}{2 - Y_{\text{OC}}(S_{11 \text{ OC}} + 1 - S_{21 \text{ OC}}) + Z_{\text{OC}}(S_{11 \text{ OC}} - 1 + S_{21 \text{ OC}})};$$
(7)

$$S_{21 \text{ A}\text{Y}} = \frac{4S_{21\text{ OC}} - 2Y_{\text{OC}}S_{\text{G}} - 2Z_{\text{OC}}S_{\text{H}} - 4Y_{\text{OC}}Z_{\text{OC}}S_{\text{K}} + S_{12 \text{ A}\text{Y}}S_{\text{L}}}{(2 - (Y_{\text{OC}} + Z_{\text{OC}})(1 + S_{11\text{ OC}} - S_{21\text{ OC}}))(2 - (Y_{\text{OC}} + Z_{\text{OC}})(1 + S_{22\text{ OC}} - S_{21\text{ OC}}))};$$
(8)

$$S_{22 \text{ AY}} = \frac{2S_{22 \text{ OC}} + [Y_{\text{OC}}(S_{22 \text{ OC}} + 1 - S_{21 \text{ OC}}) + Z_{\text{OC}}(S_{22 \text{ OC}} - 1 + S_{21 \text{ OC}})](1 - S_{12 \text{ AY}})}{2 - Y_{\text{OC}}(S_{22 \text{ OC}} + 1 - S_{21 \text{ OC}}) + Z_{\text{OC}}(S_{22 \text{ OC}} - 1 + S_{21 \text{ OC}})](1 - S_{12 \text{ AY}})},$$
(9)

где

2

$$S_{\rm G} = (1 + S_{11\rm OC})(1 + S_{22\rm OC}) - S_{21\rm OC}^2; S_{\rm H} = (1 - S_{11\rm OC})(1 - S_{22\rm OC}) - S_{21\rm OC}^2; S_{\rm K} = S_{11\rm OC}S_{22\rm OC} - (1 - S_{21\rm OC})^2;$$

$$S_{\rm L} = [(Y_{\rm OC} + Z_{\rm OC})S_{11\rm OC} + (Y_{\rm OC} - Z_{\rm OC})(1 - S_{21\rm OC})][(Y_{\rm OC} + Z_{\rm OC})S_{22\rm OC} + (Y_{\rm OC} - Z_{\rm OC})(1 - S_{21\rm OC})].$$

Полученные соотношения (7)–(9) определяют математическую модель в виде аналитических выражений для требуемых параметров активного четырехполюсника для каскада широкополосного усилителя с двухполюсниками комбинированной ОС.

Задавая значения S_{110C} , S_{220C} , S_{210C} , Y_{OC} и Z_{OC} для заданной структуры двухполюсников комбинированной OC, по соотношениям (7)–(9) можно рассчитать требуемые *S*-параметры активного четырехполюсника без двухполюсников комбинированной OC.

Требуемые S-параметры идеально однонаправленного активного четырехполюсника для согласованного широкополосного усилителя с двухполюсниками комбинированной OC

Для идеально однонаправленного активного четырехполюсника $S_{12A4}=0$, а для согласованного широкополосного усилителя $S_{110C}=S_{220C}=0$. Тогда согласно (7)-(9) требуемые S-параметры и номинальный коэффициент передачи по мощности G_{HOM} определятся выражениями:

$$S_{11AY} = S_{22AY} = \frac{(Y_{OC} - Z_{OC})(1 - S_{21OC})}{2 - (Y_{OC} + Z_{OC})(1 - S_{21OC})} ,$$
(10)

$$S_{21AY} = \frac{4S_{21OC} - 2(Y_{OC} + Z_{OC})(1 - S_{21OC}^2) + 4Y_{OC}Z_{OC}(1 - S_{21OC})^2}{[2 - (Y_{OC} + Z_{OC})(1 - S_{21OC})]^2}$$
(11)

$$G_{\text{HOMAY}} = |S_{21AY}|^2 / (1 - |S_{11AY}|^2)^2 \quad . \tag{12}$$

Полученная математическая модель активного четырехполюсника для широкополосного усилителя с комбинированной ОС позволяет определить требуемые *S*-параметры для любой заданной структуры двухполюсников комбинированной ОС и заданных параметров широкополосного усилителя. При условии $Y_{\rm OC}=0$ или $Z_{\rm OC}=0$ соотношения (10)–(12) определяют требуемые параметры однонаправленного активного четырехполюсника для широкополосного усилителя с двухполюсником параллельной или последовательной ОС [1].

Из (10) следует, что при условии $Y_{\rm OC}=Z_{\rm OC}$ требуемые коэффициенты отражения по входу и выходу однонаправленного активного четырехполюсника для согласованного широкополосного усилителя с двухполюсниками комбинированной ОС $S_{11AP}=S_{22AP}=0$ и $S_{21AP}(дБ)=G_{\rm HOM}(дБ)$.

Считая широкополосный усилитель с комбинированной ОС идеальным, обладающим равномерной амплитудно-частотной характеристикой (АЧХ) и линейной фазочастотной характеристикой (ФЧХ), т.е.

$$|S_{21OC}(f)| = \text{const} \ \text{u} \ \Theta_{21OC} = \arg S_{21OC}(f) = 180^{\circ} \cdot (1 - f/f_{\text{B}}),$$
 (13)

где f – текущая частота; $f_{\rm B}$ – частота нормировки; задавая значение коэффициента передачи в виде $S_{21\,\rm OC} = |S_{21\,\rm OC}| \exp(i\Theta_{21\rm OC})$ для заданных структур двухполюсников комбинированной ОС по соотношениям (10)–(12), можно рассчитать требуемые *S*-параметры активного четырехполюсника без двухполюсником комбинированной ОС.

Для *R*-двухполюсников комбинированной ОС проводимость параллельной ОС и сопротивление последовательной ОС определим из выражения

$$Y_{\text{OCR}} = Z_{\text{OCR}} = 1 / (1 + |S_{21\text{OC}}|) ;$$
 (14)

для последовательного *RL*-двухполюсника проводимость параллельной ОС и параллельного *RC*-двухполюсника последовательной ОС находим

$$Y_{\text{OCRL}} = Z_{\text{OCRC}} = Y_{\text{OCR}} / [1 + j \cdot (1 - \Theta_{21\text{ OC}} / 180^\circ)] ; \qquad (15)$$

для параллельного *RC*-двухполюсника проводимость параллельной OC и последовательного *RL*-двухполюсника последовательной OC находим

$$Y_{\text{OCRC}} = Z_{\text{OC RL}} = Y_{\text{OC R}} \cdot [1 + j \cdot (1 - \Theta_{21\text{OC}} / 180^\circ)] .$$
(16)

Результаты расчета требуемого коэффициента передачи однонаправленного активного четырехполюсника для двухполюсников комбинированной ОС, рассчитанные на основе выражений (14)–(16) для коэффициента передачи широкополосного усилителя $|S_{210C}| = 12$ дБ и $\Theta_{210C} = 180^{\circ}$, 135°, 90°, 45°, 0°, -45°, -90°, -135°, -180°, приведены в табл. 1–3.

Таблица 1

 $|S_{21}|$, Θ_{21} активного четырехполюсника для двухполюсников Y_{OCR} и Z_{OCR} комбинированной OC

Θ _{21OC} ,°	180	135	90	45	0	-45	-90	-135	-180
<i>S</i> ₂₁ , дБ	>90	18,1	12,6	10,0	9,2	10,0	12,6	18,1	>90
Θ ₂₁ ,°	90	69,1	47,4	25,2	0	-25,2	-47,4	-69,1	-90

Г.Н. Якушевич. Математическая модель активного четырехполюсника для широкополосного усилителя 37

		-		•				-	
Θ _{21OC} ,°	180	135	90	45	0	-45	-90	-135	-180
S ₂₁ , дБ	>90	15,5	10,8	9,4	10,2	12,9	17,0	17,0	13,5
Θ ₂₁ ,°	90	74,0	56,2	35,0	9,0	-25,4	-80,8	-159.6	148

 $|S_{21}|$, Θ_{21} активного четырехполюсника для двухполюсников Y_{OCRL} и Z_{OCRC} комбинированной OC

Таблица 3

Таблица 2

 $|S_{21}|$, Θ_{21} активного четырехполюсника для двухполюсников Y_{OCRC} и Z_{OCRL} комбинированной OC

$\Theta_{210C},^{\circ}$	180	135	90	45	0	-45	-90	-135	-180
<i>S</i> ₂₁ , дБ	>90	22,1	15,4	11,2	8,7	7,4	7,1	7,5	8,6
Θ ₂₁ ,°	90	63,3	37,0	11,2	-13,1	-34,0	-50,2	-61,5	-68,2

Полученные результаты показывают, что максимальный выигрыш в коэффициенте передачи S_{21OC} широкополосного усилителя с двухполюсниками комбинированной ОС по отношению к коэффициенту прямой передачи S_{21} активного четырехполюсника за счет положительной ОС при идеальном согласовании получается с Y_{OCR} и Z_{OCR} двухполюсниками комбинированной ОС при $\Theta_{21OC} = 0$ (см. табл. 1), с Y_{OCRL} и Z_{OCRC} двухполюсниками комбинированной ОС при $\Theta_{21OC} > 0$ (см. табл. 2), т. е. увеличение задержки по фазе в цепи ОС приводит к уменьшению требуемого значения фазы по цепи прямого усиления, с Y_{OCRC} и Z_{OCRL} двухполюсниками комбинированной ОС при $\Theta_{21OC} > 0$ (см. табл. 3), т. е. уменьшение задержки по фазе в цепи ОС приводит к уменьшению требуемого значения $\Theta_{21OC} < 0$ (см. табл. 3), т. е. уменьшение задержки по фазе в цепи ОС приводит к увеличению тре-

буемого значения фазы по цепи прямого усиления.

В общем случае зависимости параметров активного элемента отличаются от требуемых параметров активного четырехполюсника приведенных в табл. 1-3 и для их сближения на входе и выходе активного элемента необходимо включать ФТЦ и СЦ [2, 3]. Обобщенная структурная схема широкополосного усилителя с двухполюсниками комбинированной ОС на основе активного элемента с ФТЦ и СЦ на входе и выходе, образующими активный четырехполюсник, представлена на рис. 2.

Математическое моделирование широкополосного усилителя с комбинированной ОС. Математическое моделирование проведем на основе приведенной на рис. 3 эквивалентной схемы кристалла, отражающей в широком диапазоне частот частотные свойства биполярного транзистора.

Рис. 2. Обобщенная структурная схема широкополосного усилителя с двухполюсниками комбинированной ОС

Рис. 3. Эквивалентная схема кристалла биполярного транзистора

Максимальная частота генерации кристалла биполярного транзистора на основе данной эквивалентной схемы определяется выражением_____

$$f_{\max} \approx \sqrt{\alpha_0 \, \omega_{\rm T} / \tau_{\rm K} / 4\pi} \,, \tag{17}$$

где $\omega_T = 2\pi f_T = 1/(r_{\mathcal{F}} C_{\mathcal{F}})$; ω_T – круговая граничная частота; f_T – граничная частота, на которой коэффициент передачи по току схемы с общим эмиттером равен 1; α_0 – коэффициент передачи по току схемы с общей базой; $r_{\mathcal{F}} = 25,6 \text{ [MB]} / I_{\mathcal{F}} \text{[MA]}$ – сопротивление эмиттера для данного значения тока $I_{\mathcal{F}}$, $C_{\mathcal{F}}$ – емкость эмиттерного перехода; $\tau_K = r_{\mathcal{F}}C_K$ – постоянная времени коллекторного перехода; $r_{\mathcal{F}}$ – сопротивление базы; C_K – емкость коллекторного перехода.

Из выражения (17) следует, что при сохранении условия $\omega_T/\tau_K = \text{const}$ максимальная частота генерации для различных значений сопротивления базы тоже будет оставаться постоянной. При этом на высоких частотах реальные составляющие входного $\text{Re}(Z_{\text{BX}})$ и выходного сопротивлений $\text{Re}(Z_{\text{Bblx}})$ приближенно определяются из следующих выражений:

$$\operatorname{Re}(Z_{BX}) \approx r_{\rm B}, \operatorname{Re}(Z_{BbIX}) \approx r_{\rm B} \omega_{\rm T} \tau_{\rm K}.$$
 (18)

На рис. 4–6 приведены принципиальные схемы и результаты расчета *S*-параметров для различных эквивалентных схем кристалла транзистора из табл. 4 и токе эмиттера $I_{\Im} = 50$ мА. Номиналы элементов ФТЦ, СЦ и Y_{OC} рассчитаны по соотношениям, приведенным в [1–3].

Рис. 4. Принципиальная схема (a), коэффициенты S₂₁ (б), S₁₁ и S₂₂ (в) для кристалла типа VT1

Рис. 5. Принципиальная схема (a), коэффициенты S₂₁ (б), S₁₁ и S₂₂ (в) для кристалла типа VT2

Результаты расчетов показывают, что чем точнее приближены *S*-параметры кристалла транзистора (см. табл. 4) к требуемым параметрам активного четырехполюсника (см. табл. 1–3), тем равномернее частотная зависимость коэффициента передачи и меньше коэффициенты отражения широкополосного усилителя с комбинированной ОС (см. рис. 4, δ , ϵ). Отклонение от требуемых *S*-параметров приводит к появлению неравномерности коэффициента передачи и увеличению коэффициента отражения на средних частотах (см. рис. 5, δ , в и рис. 6, δ , ϵ).

Таблица 4

IIapam	стры элем	CHIOD JN	ра и D-парам	пры па та	стоте т т т ц				
Тип	$f_{\rm max},$ ГГц	$\omega_T \tau_K$	<i>r</i> _Б , Ом	Z _{BX} , Ом	$Z_{\rm BЫX}$, Ом	S_{11}	<i>S</i> ₁₂ , дБ	<i>S</i> ₂₁ , дБ	S_{22}
VT1	3	1	50	50–1,6i	49–10i	0,016/-84 ⁰	$-45,8/-3,5^{\circ}$	9,4/86 ⁰	0,10/-91 ⁰
VT2	3	0,25	50	50-1,2i	180–63i	$0,012/-88^{0}$	$-53,7/-2,5^{\circ}$	7,5/87 ⁰	0,61/-11 ⁰
VT3	3	0,25	12,5	12,6-0,8i	45–16i	$0,6/-178^{\circ}$	$-42,0/-8,2^{\circ}$	7,4/81 ⁰	$0,18/-97^{0}$

Параметры элементов эквивалентной схемы кристалла транзистора и S-параметры на частоте 1 ГГц

Экспериментальная проверка аналогичных теоретических исследований и математического моделирования была приведена автором в предыдущих статьях [1–3].

Полученные результаты:

– определена математическая модель активного четырехполюсника для широкополосного усилителя с двухполюсниками комбинированной ОС в виде аналитических выражений (10)–(12), на основе которых рассчитываются требуемые S-параметры активного четырехполюсника, к которым необходимо приблизить параметры активного элемента, прежде чем ввести двухполюсники комбинированной ОС;

 получена обобщенная структурная схема широкополосного усилителя с двухполюсниками комбинированной ОС, представленного активным элементом, на входе и выходе которого включены ФТЦ и СЦ;

– приведены результаты математического моделирования широкополосных усилителей с комбинированной ОС для различных значений сопротивления базы $r_{\rm b}$ и произведения $\omega_{\rm T}\tau_{\rm K}$ эквивалентной схемы кристалла транзистора при постоянной максимальной частоте генерации $f_{\rm max}$, при этом на верхних частотах получается выигрыш в коэффициенте передачи по отношению к номинальному коэффициенту передачи по мощности за счет положительной ОС (см. рис. 4, δ – 6, δ , заштрихованные области).

Литература

1. Якушевич Г.Н. Математическая модель активного четырехполюсника для широкополосного СВЧ-усилителя с двухполюсником параллельной обратной связи // Доклады Том. гос. ун-та систем управления и радиоэлектроники. – 2009. – №2 (20). – С. 32–37.

2. Якушевич Г.Н. Алгоритм расчета транзисторного широкополосного усилителя с двухполюсником параллельной обратной связи // Доклады Том. гос. ун-та систем управления и радиоэлектроники. – 2010. – №1 (21), ч. 2. – С. 63–68.

3. Якушевич Г.Н. Проектирование транзисторных широкополосных усилителей с двухполюсником параллельной обратной связи // Докл. Том. гос. ун-та систем управления и радиоэлектроники. – 2011. – №1 (23). – С. 65–70.

Якушевич Геннадий Николаевич

Канд. техн. наук., доцент каф. средств радиосвязи ТУСУРа Тел.: (382-2) 41-37-09 Эл. почта: mrc@main.tusur.ru

Jakushevitch G.N. A mathematical model of an active four-port device for a wideband amplifier with the two-port serial and parallel feedback

There are given a mathematical model of an active four-port device for a wideband amplifier on a basis of provided forward coefficients, reflection coefficients and the structure of the combinatory feedback two-port. There is also given the structure circuit of the active four-port described by the active element with phase-forming and providing symmetry circuits at the input and output.

Keywords: Mathematical model, active four-port device, wideband amplifier, serial and parallel feedback twoport.