УДК 539.216.2

А.С. Котин, Э.Б. Мурзакматов

Моделирование и исследование просветляющих покрытий на кристаллах RKTP

Произведено моделирование, нанесение и исследование однослойных просветляющих покрытий на кристаллах RKTP. Ионное ассистирование в процессе осаждения покрытий позволило увеличить стойкость покрытия к излучению лазера.

Ключевые слова: просветляющее покрытие, стойкость к излучению лазера, ионно-ассистированное осаждение.

Число оптических элементов, на которые наносятся просветляющие покрытия, непрерывно возрастает. Среди всего многообразия материалов выделяются высокоомные кристаллы титанилфосфата калия КТіОРО₄ (RKTP), имеющие высокие нелинейно-оптические и электрооптические свойства, а также высокий показатель порога оптического разрушения [1].

Устройства на базе таких кристаллов способны модулировать лазерное излучение, преобразовывать его частоту (длину волны), менять направление распространения [2]. Эффективное использование высокоомных кристаллов КТР в оптике мощных лазеров ограничивается естественными потерями света на френелевское отражение.

Эффективное использование кристаллов RKTP в оптике мощных лазеров может быть достигнуто за счет нанесения на рабочие поверхности кристаллов просветляющих покрытий, обладающих высоким пропусканием на требуемой длине волны излучения лазера.

Моделирование покрытий. Для получения максимального эффекта просветления для однослойных покрытий должно выполняться следующее условие: $n_1^2 = n_0 n_s$ [3], где n_s – показатель преломления материала кристалла; n_1 – показатель преломления пленки, нанесенной на поверхность кристалла; n_0 – показатель преломления окружающей среды. Поскольку в данном случае показатель преломления кристалла равен 1,78, то показатель преломления пленки должен быть около 1,33.

Рис. 1. Теоретическая зависимость коэффициента отражения от толщины пленки MgF₂, напыляемой на кристалл RKTP: — кривая для длины волны 660 нм; · · · · · – кривая для длины волны 1064 нм

Наиболее близким материалом с показателем преломления 1,38 является фтористый магний. Кроме того, должно выполняться условие, что оптическая толщина просветляющего покрытия *nd* должна быть равна четверти длины волны [4], излучаемой кристаллом, т.е. $nd = (\lambda/4) \cdot m$, m = 1, 2.2

2, 3, где λ = 1064 нм.

Теоретические зависимости коэффициентов отражения от толщины просветляющих покрытий на кристаллах RKTP приведены на рис. 1.

Нанесение просветляющих покрытий. Нанесение просветляющих покрытий проводилось на вакуумной установке с безмасляной откачкой, которая осуществлялась механическим спиральным форвакуумным насосом ISP-500 и высоковакуумным турбомолекулярным насосом. Схематичное изображение процесса нанесения просветляющего покрытия представлено на рис. 2.

Процесс нанесения однослойного просветляющего покрытия заключался в следующем. Помешенные в вакуумную камеру кристаллы нагревались с заданной скоростью, при помощи вольфрамового нагревателя *1*. После нагрева кристаллов до требуемой температуры происходил процесс нанесения покрытия, заключающийся в разогреве тигля до температуры плавления фтористого магния *5*, которая равнялась 1255 °C. Одновременно с нанесением происходил фотометрический контроль толщины *2* просветляющего покрытия. Эксперименты проводились с ионным ассистированием процесса нанесения на кристаллы и без (3, 4). Ионное ассистирование производилось при энергиях порядка 200 эВ.

Рис. 2. Схематичное изображение установки нанесения просветляющего покрытия на кристаллы RKTP. *1* – блок управления нагревом кристаллов; *2* – блок контроля нанесения по-

крытия; 3 – блок управления пиэл; 4 – блок управления ионным источником; 5 – блок управления тиглем

Исследование параметров просветляющих покрытий. Исследования толщины и пропускания полученного покрытия проводились на эллипсометре «ЭЛЛИПС-1891 САГ». Эллипсометр позволяет проводить измерения в спектральном диапазоне от 250 до 1050 нм. Минимальный шаг сканирования составляет 0,5 нм. Полученные зависимости коэффициента пропускания кристалла RKTP с просветляющим покрытием MgF₂ от длины волны представлены на рис. 3.

от длины волны

Таким образом, пропускание кристалла КТР с просветляющим покрытием на длине волны 1,05 мкм равно не менее 97%.

Кроме того, был проведен анализ стойкости просветляющих покрытий к излучению лазера. В ходе эксперимента исследовались две группы просветляющих покрытий на кристаллах КТР, полученные разными методами в вакууме. К первой группе относятся покрытия, полученные терморезистивным методом, ко второй – покрытия, полученные методом ионно-ассистированного осаждения.

Исследование стойкости к излучению лазера однослойных просветляющих покрытий на кристаллах КТР проводилось с помощью экспериментальной установки, представленной на рис. 4.

Рис. 4. Экспериментальная установка по исследованию лучевой прочности просветляющего покрытия: 1 – лазер; 2 – призма; 3, 4 – линзы; 5 – исследуемый кристалл с просветляющим покрытием; 6 – защитный экран

Мощное излучение, создаваемое лазером *1* (лазером на рубине или стеклом с неодимом), работающем в режиме модулированной добротности, направляется призмой *2* на коллиматор, состоящий из двух линз *3*, *4*, далее установлен исследуемый кристалл *5*. После кристалла ставится защитный экран. После коллиматора диаметр пучка составлял 1,3 мм.

В эксперименте использовался твердотельный лазер Nd:YAG LOTIS Tii LS-2137/20 с максимальной выходной мощностью излучения на длине волны 1,064 мкм порядка 600 мДж. Лазер оснащен дистанционным пультом управления, позволяющим регулировать такие параметры, как мощность, частота и длительность импульсов. Параметры работы лазера приведены в табл. 1.

Таблица 1

Параметры работы лазера						
Длина волны, мкм	Частота, Гц	Длительность импульс, нс	Мощность, мДж			
1,064	20	15	0÷600			

Для количественной характеристики величины порога лазерного разрушения обычно используют пороговые или средние значения плотности энергии (мощности) при определенном выборе критерия разрушения и измерении параметров светового импульса, приводящего к разрушению. В эксперименте критерием разрушения просветляющего покрытия являлось появление яркой вспышки у поверхности образца, связанной с возникновением плазмы, так как это почти всегда соответствует наличию повреждений, видимых невооруженным глазом или в микроскоп. Пороговая плотность энергии P_J и мощности P_w разрушения определяется выражениями:

$$P_j = \frac{j}{S}; \tag{1}$$

$$P_{W} = \frac{H_{p}}{\tau}, \qquad (2)$$

Таблица 2

где J – пороговая энергия (часть энергии импульса, выделившаяся к моменту разрушения), Дж; S – эквивалентная площадь воздействия, т.е. площадь эквивалентного светового пятна с равномерным распределением освещенности, равным максимальной освещенности в реальном пятне, см²; τ – длительность импульса разрушения, с.

Полученные результаты исследования представлены в табл. 2.

і сзультаты исс.	педования п	росыстлиюц	цил покрытии п	а лучсвую стоикость
N⁰	IBAD	<i>Ј</i> , Дж	P_{J} , Дж/см ²	$P_{w} \cdot 10^{9}, \text{Bt/cm}^{2}$
1	_	0,3	17,28	1,152
2	—	0,3	17,28	1,152
3	+	0,35	20,17	1,344
4	—	0,28	16,13	1,075
5	+	0,38	21,89	1,460
6	+	0,4	23,05	1,536
7	+	0,435	25,06	1,671
8	_	0,29	16,71	1,114

Результаты исследования просветляющих покрытий на лучевую стойкость

Исследование показало, что просветляющие покрытия, полученные методом ионно-ассистированного осаждения, имеют на 30% лучшие показатели стойкости к высокой мощности лазерного излучения, чем покрытия, полученные терморезистивным методом. Таким образом, кристаллы с такими просветляющими покрытиями могут использоваться в оптических устройствах, использующих в качестве рабочих излучения с плотностями мощности порядка 1,4 ГВт/см².

Литература

1. Электрооптические модуляторы лазерного излучения на основе высокоомных кристаллов КТіОРО4 / И.А. Паргачёв, Ю.В. Кулешов, В.А. Краковский, Л.Я. Серебренников, С.М. Шандаров и др. // Доклады ТУСУР. – 2012. – Т. 26, № 2, ч. 2. – С. 90–92.

2. Roth M. Oxide Crystals for Electro-Optic Q-Switching of Lasers/ M. Roth, M. Tseitlin, N. Angert // Glass physics and chemmistry. – 2005. – Vol. 31, № 1. – P. 86–95.

3. Проектирование, изготовление и исследование интерференционных покрытий: учеб. пособие / Е.Н. Котликов, Г.А. Варфоломеев, Н.П. Лавровская и др. – СПб.: ГУАП, 2009. – 189 с.

4. Крылова Т.Н. Интерференционные покрытия. – Л.: Машиностроение, 1973. – 224 с.

Котин Антон Сергеевич Аспирант каф. электронных приборов (ЭП) ТУСУРа Тел.: 8-923-430-69-77 Эл. почта: kotin77@gmail.com

Мурзакматов Эрмек Бекжанович Студент каф. ЭП ТУСУРа Тел.: 8-952-886-65-86 Эл. почта: eremei.m@gmail.com

Kotin A.S., Murzakmatov E.B. Modeling and research of antireflection coatings on RKTP crystals

The article describes modeling, evaporation and research of single-layer antireflection coatings produced on RKTP crystals. During the IBAD process the resistance to the laser emission of the coating has increased. **Keywords:** antireflection coating, resistance to laser radiation, ion-assisted deposition.